Ol(c:)ij ect-Oriented Analysis
and Design of Concurrent,
Real- Time Systems

KEVIN L. MILLS

INFT 860 SPRING 1993

DESIGN METHODS FOR
REAL-TIME SYSTEMS

GEORGE MASON UNIVERSITY

Object-Oriented Analysis and Design of Concurrent, Real-Time Systems May 25, 1998
[. Introduction

As microprocessors fall in price and increase in performance, computing devices, and the
software that controls such devices, assume alarger role in society. For example, many gasoline
filling stations now offer computer-controlled pumps that alow a customer to specify his
preference for octane, to fill histank, and to pay for his purchase by credit card, all without
human assistance. Automated teller machines (ATMs) abound in every shopping mall, grocery
store, and airport terminal; credit card-activated tel ephones appear where travelers congregate;
automobiles run more cleanly, efficiently, and safely with the aid of microprocessors; computer
bulletin-board systems allow subscribers to scan product offerings, to select purchases, and to
pay by credit card. All of these, increasingly common, computer applications exhibit some form
of real-time processing and concurrency. Many involve distributed processing, aswell. Asthe
number and scope of these real-time, automated applications grow, our ability to anayze
reguirements and to design solutions for concurrent, real-time systems must improve. (Readers
unfamiliar with the issues separating the design of concurrent, real-time systems from sequential
applications should consult an introductory exposition, such as that provided by Laplante".)

Early attemptsto analyze requirements for real-time systems focused on extensions to
structured analysis. The resulting technique, Real-Time Structured Analysis (RTSA)? added
control transforms, control event flows, and state transition diagrams to structured analysis.
RTSA was first coupled with structured design to map real-time problems to sequential,
one-task, designs. Later Research showed how RTSA could be mapped to a concurrent tasking
design using Design Approach for Real-Time Systems (DARTS)®. For designing real-time
systems, DARTS provides a significant improvement over structured design.

Introduction of Ada' as a programming language and run-time system for embedded,
control software expanded the conceptual model through which most real-time, concurrent
systems could be approached”. Adaincluded a multitasking model, synchronization techniques,
and support for information hiding. These advances encouraged researchers to devise new
methods for analyzing and designing real-time systems. One such method, concurrent
object-based rea-time analysis (COBRA)?, evolved from RTSA. While retaining the notation
from RTSA, COBRA adds. (1) guidelines for developing an environmental model,

(2) guidelines for decomposing a system into subsystems, (3) criteriafor identifying objects and
functions, and (4) techniques for analyzing behavioral scenarios. COBRA also introduced the
notion of aggregate objectsinto the analysis. COBRA analyses can be mapped readily into
concurrent designs, and then into Ada implementations, using the Ada-based Design Approach
for Real-Time Systems (ADARTS)®.

Following the publication of Ada, an object-based programming language, further
developments led to the emergence of object-oriented languages, such as C++’ and Eiffel®.
Object-oriented languages include expanded features for software reuse (inheritance,
polymorphism, and object and method contracts)®. Object-oriented programming appears
attractive because the cost of software development might be reduced as the amount of software
reuse increases. Aswith Ada, object-oriented languages expanded the conceptua model
available to software designers. Recently, a number of methods have emerged for analyzing and

T Ada is a registered trademark of the U.S. Department of Defense
1

Object-Oriented Analysis and Design of Concurrent, Real-Time Systems May 25, 1998

designing systems using object-oriented concepts'®*#*3, One such method, the object modeling
technique (OMT)*, appears to build on the concepts used in RTSA and COBRA, and, thus,
might be applicable to concurrent, real-time systems.

This paper proposes that OMT provides a suitable analysis method for concurrent,
real-time systems. The argument is supported through application of OMT to an example
real-time application, an automated gas station management system (see Appendix A for the
requirements statement). Further, amapping is proposed from an OMT analysisto adesign,
based on an Object-Oriented Design Approach for Real-Time Systems (OODARTS), which
extends the object-based ADARTS method to encompass a full, object-oriented, design model.
To enable comparison between the RTSA, COBRA, and OMT methods, an analysis of the
automated gas station management problem is presented using each of the methods. The RTSA
specification is given in Appendix B, the COBRA specification in Appendix C, and the OMT
specification in Appendix D. To facilitate an evaluation of the OODARTS design method
against ADARTS, two designs for the gas station management system are shown. One design,
included as Appendix E, usesthe ADARTS method to design a solution from the COBRA
analysis. The second design, included as Appendix F, uses the proposed OODARTS method to
design a solution from the OMT analysis.

Before discussing the various analyses and designs shown in the appendices, this paper,
in Section |1, gives abrief description of the automated gas station problem. Section 1|
discusses the various problem analyses: first, the RTSA analysis, followed by the COBRA
specification and then the OMT model. Section IV presents the two design solutions: first, the
ADARTS design, developed from the COBRA analysis, and then the OODARTS solution,
developed from the OMT model. Section V provides a comparative evaluation of the strengths
and weaknesses of the various analysis and design approaches. Special consideration is given to
the applicability of OMT and OODARTS as analysis and design methods for concurrent,
real-time systems. The paper closes with some conclusions and alist of references.

Il. A Real-Time Gas Station Control Problem

The real-time problem used as an example in this paper should be familiar to many.
Increasingly, gas stations are introducing automated pump processing to enable customersto
purchase gasoline by inserting a credit card or a cash card, by selecting a type of gasoline, and
then by pumping the gas for themselves. Of course, customers may still opt to pay in cash or by
credit card at a booth where a human attendant waits. The attendant can also observe the gas
station for safety hazards and emergencies, correcting hazards and reporting emergenciesto the
police and fire departments, as appropriate.

The gasoline station used as an examplein this paper carries the familiar concept of an
automation-assisted gas station to afuture time where gas stations might be completely
automated. Such stations would need automated gas station management (AGMS) software to
control their operations. The reader should imagine that the Pal Sal (Pump A Little, Save A Lot),
Inc. gas station chain is considering total automation of their gas stations. Further, image that
Pal Sal has assembled a requirements statement for automating their gas stations. The imagined

2

Object-Oriented Analysis and Design of Concurrent, Real-Time Systems May 25, 1998

requirements statement is provided as Appendix A. To help to envision the problem, a
conceptual diagram of an automated Pal Sal station is shown as Figure 1.

COMMUNICATION

S LINK
= & u
REMOTE
CENTRAL

FACID ITY

e [C_IA
[

SMOKE And HEAT
‘L)I:It(, TORS ‘

B W

=%
T
=

[[T
[[T

PUMPS

o CASH CARD CREDIT CARD

— -

Figure 1. An Automated Gas Station Concept

Each gas station comprises a number of pumps, initially eight, capable of accepting credit
or cash cards from customers, of dispensing gasoline, when authorized, of recording the
transaction, and of updating a customer’s cash card to deduct the amount of money used on gas.
If acash card isinserted, the pump can validate the card by examining the cash value; any
customer can purchase gas with a cash card, up to the limit of cash on the card. If acredit cardis
inserted, the pump must send an authorization request to a remote central facility, and must then
await areply. If the card isvalidated, then gas can be dispensed until the customer turns off the
switch, or the switch is shut off automatically. After processing a credit transaction, the pump
sends the cost of the gas purchased, and the account number used to buy the gas, to the remote

central facility. Inthe example, each pump is capable of dispensing only a single type of
gasoline.

Each pump comprises a display to show the customer the amount and cost of the gas
purchased, a switch to activate the pump dispenser, and two LEDs to inform the customer when
their cash card is used or when their credit card is disapproved. Each pump operates
autonomously, but a gas station controller can request that individual pumps finish the current
transaction, if any, and then lock.

Each station includes a gas station controller that monitors safety and operating conditions
at the gas station. Connected to the gas station controller, a set of paired smoke and heat

3

Object-Oriented Analysis and Design of Concurrent, Real-Time Systems May 25, 1998

detectors monitor the smoke particle concentration and temperature, respectively, at each pump.
These detectors areillustrated in Figure 1 as eight boxes, one mounted at each pump. Each box
contains a smoke and heat detector. Whenever a smoke particle concentration or temperature
threshold is exceeded at one of the detectors, an alert israised at the gas station controller. The
gas station controller, upon receiving an alert, sounds an alarm at the station, sends an alarm
message to the remote central facility, and then requests that each pump close operations. The
gas station can also receive shutdown and restart requests from the remote central facility. Upon
receiving a shutdown request, the gas station asks that all pumps cease operations. Upon
receiving arestart request, the gas station asks that all pumps recommence operations.

A communications link, as shown in Figure 1, provides the path between the gas station
controller and the remote central facility, as well as a means for the pumps and remote central
facility to exchange information. The link can go up and down. When the link is down, the gas
station is required to shutdown. When the link returns to operation, the gas station should
automatically restart. When the link goes down, any transactions in progress are, of course,
terminated, but arecord of any credit transactions must be saved, so that the cost of gas
purchased and the account number can be passed on to the remote central facility once the link
resumes operation.

The remote central facility maintains a staff of operators to monitor alarms at each gas
station and to maintain the central facility. The remote central facility also maintains a database
of corporate credit accounts.

The interested reader should take afew minutes to scan the five page problem statement
included as Appendix A. Those readers familiar with RTSA might also scan Appendix B to get
amore precise understanding of the automated gas station management system (AGMYS)
requirements.

[11. Problem Analyses and Specifications

At this stage in the paper, we switch writing styles to amore personal, first person plural.
We believe this switch in viewpoints hel ps to emphasize the nature of the design process. Since
the requirements have been stated, we begin to analyze those requirements, and to document our
understanding. To effectively communicate our thinking, we believe that the reader should know
that we exist, that we are thinking beings, and that we can make mistakes and reach assessments
and possess opinions with which the reader may not agree. Also, we think that the more active
writing style that flows naturally from afirst person view will help us keep the reader’s attention.

In this, the third section of our paper, we present the analysis of the automated gas station
management system (AGMS). We performed the analysis using three different methods, and we
documented each of the analyses. For thefirst analysis we used Real-Time Structure Analysis
(RTSA), the simplest, oldest, and most widely applied of the analysis techniques we present in
this paper. Our main purpose in showing an RTSA specification isto present the AGMSina
more precise manner than the requirements statement in Appendix A by using an analysis
method that many readers will be familiar with and that most readers, familiar or not, will be able
to easily comprehend. The RTSA specification provides alevel base for understanding the
AGMS problem before we move on to consider progressively more complicated specifications

4

Object-Oriented Analysis and Design of Concurrent, Real-Time Systems May 25, 1998

resulting from the Concurrent Object-Based Real-time Anaysis (COBRA) method and the
Object Modeling Technique (OMT). So, we begin with RTSA.

A. RTSA -- A Great, Little Method for Real-Time Analysis

Real-Time Structured Analysis (RTSA) begins with the familiar concepts from structured
analysis: context diagrams, data flow diagrams, data dictionaries, and puesdo-code specifications
for leaf-level functions. To these concepts, the idea of control transforms, encompassing state
transition diagramsis added. The result: a problem analysis method for real-time systemsthat is
easy to use, easy to learn, and easy to understand. We have applied RTSA to our AGMS
problem, and have documented the resulting specification in Appendix B.

The data and control flow diagrams for the AGMS are given on pages B-1 through B-7.
The data dictionary comprises pages B-8 through B-11. The psuedo-code specifications, one for
each leaf node data transform, are recorded on pages B-12 through B-17. The state transition
diagrams, one for each control transform, are shown on pages B-18 through B-20.

The AGMS context diagram, B-2, delineates the boundary between the software and the
hardware components of the AGMS. Asyou can readily see, the AGMS software must interact
with a card reader, a communications link, some LEDs, some switches, an alarm, some gas
dispensers, and some detectors. On page B-3, the AGMS is decomposed into three functions: 1)
manage pump (one of which will exist for each pump in agas station), 2) manage
communications link (one per gas station), and 3) manage gas station (one per gas station).

B-4 presents a further decomposition of the manage pump function. Here we see that
each pump monitors a pump on/off switch (1.2), and monitors a credit/cash card reader (1.3).
These devices can cause events to which the pump must respond. The Control Pump control
transform (1.1) accepts these events, as well as events arriving from the Manage Gas Station (3)
and Manage Communications Link (2) transforms, analyzes the events against the current state
of the pump, and then selects certain data transforms to activate. Data transforms controlled by
Control Pump (1.1) include: Authorize Transaction (1.4), Dispense Gas (1.5), Complete
Transaction (1.6), Reject Transaction (1.7), and Establish Transaction (1.8). All of the data
transforms shown on B-4 are leaf-level transforms, and therefore, each of them has a
corresponding mini-specification in psuedo-code. We encourage the reader to peruse these
mini-specifications to get a better understanding of the AGMS requirements. The Control Pump
control transform refers to a state transition diagram (on B-19) that defines the behavior of the
transform. We hope the reader will review the finite state machine on B-19 to understand how
Control Pump works. On the diagram, events are shown above lines, with corresponding actions
shown below the same line. Conditions that must be satisfied coincident with an event are shown
in [square brackets].

To run quickly through the Control Pump state diagram (see B-19), we see that the pump
begins operation in the open state. Once a cash or credit card isinserted, the pump moves to the
waliting authorization state, while invoking the Authorize Transaction function. If the transaction
Is authorized, the pump moves into the authorized state, unless the customer turned on the switch
while authorization was pending, in which case the pump moves directly to the dispensing state
and enables the Dispense Gas function. If the customer’s cash card runs out, then the gas

5

Object-Oriented Analysis and Design of Concurrent, Real-Time Systems May 25, 1998

dispenser stops, the Compl ete Transaction function is performed, and the pump returnsto the
open state. If the switch isturned off while dispensing, the pump tells the gas dispenser to halt
and enters the waiting on done state. The left-hand side of the state diagram deals with requests
to close the pump while the pump isin various states. We think the reader can now easily follow
those events and actions. Once the pump enters the closed state, it remains there until an open
event arrives from the Manage Gas Station data transform.

The Manage Communications Link (2) transform is further decomposed into two levels:
B-5 showsthefirst level, and B-6 further decomposes the Send to Link (2.5) transform from B-5.
The inputs to the Manage Communications Link transform are all allocated on B-5. Incoming
messages from the communications link are handled by Add to Rev List (2.1), which saves each
message into the RCV LIST data store and then calls Decode Message Header (2.2). Decode
M essage Header removes a message from the RCV LIST data store, analyzes the message, and
generates any events stimulated be the message. Incoming Link State Interrupts are handled by
Anayze Link State (2.3). Asappropriate, Analyze Link State will generate link events for
Manage Gas Station (3) and will pass on any new link status to Send to Link (2.5). Add to Tx
List handles messages flowing from Manage Gas Station (3) and from any of the Manage Pump
(2) transforms. Add to Tx List saves the incoming message into the TX LIST data store and then
sends a Wakeup to Send to Link (2.5). Send to Link isfurther decomposed on B-6.

Receiving anew link status or receiving a Wakeup causes Transmit Message (2.5.1) to
act. On aWakeup, Transmit Message checksthe TX LIST for messages to send and checks the
link status for an up link. If all conditions are ready, a message is removed from TX LIST and
sent as an Outgoing Message. If anew link status changes the link from up to down, then
Transmit Message (2.5.1) sends a Save to Save Credit Transactions (2.5.2) which then moves
any credit transactions from the TX LIST to the CREDIT TRANSACTION LIST while
discarding any other messagesin TX LIST. If anew link status changes the link from down to
up, then Transmit Message (2.5.1) sends a Restore to Restore Credit Transactions (2.5.3) which
then moves the contents of CREDIT TRANSACTION LIST tothe TX LIST.

The Manage Gas Station (3) transform is further decomposed on B-7. Here we see that
Manage Gas Station is controlled by a state transition diagram (shown on B-20) embodied in
Control Gas Station (3.1). The smoke and heat detectors in the gas station are monitored by
Monitor Detectors (3.2) which generates a Threshold Exceeded event when appropriate. Other
events arrive at Control Gas Station from Manage Communications Link (2). Control Gas
Station can trigger any of five functions: Sound Alarm (3.3), Reset Alarm (3.4), Send Alarm
Message (3.5), Send Opens (3.6), and Send Closes (3.7). The behavior of each of these functions
is described in a mini-specification. The conditions under which each of these transformsis
triggered are detailed in the Control Gas Station state transition diagram (B-20). We encourage
the reader to review the Control Gas Station state transition diagram, and the related
mi ni-specifications.

The data dictionary on B-9 through B-11 is self-explanatory. Each input and output data
item shown on the context diagram is described. Also the internal data stores are described.
From RTSA, we now take a step up in complexity to COBRA.

B. COBRA -- A Means To Analyze Larger Real-Time Systems

6

Object-Oriented Analysis and Design of Concurrent, Real-Time Systems May 25, 1998

The Concurrent Object-Based Real-time Analysis (COBRA) method starts with RTSA
as abase and adds severa extensions intended to help analysts understand large, real-time
systems. COBRA dividesthe analysis of a system into two parts. 1) an environmental model
and 2) a behavioral model. The environmental model comprises a system context diagram, and
where appropriate, supporting subsystem context diagrams. COBRA includes a set of guidelines
for developing the environmental model. In fact, one of the extensionsto RTSA provided by
COBRA isthe concept of decomposing alarge, real-time system into subsystems. Another
extension with COBRA permits representing subsysterm components not only as functions, but
also as objects (thus, the object-based component of the name COBRA). COBRA includes
criteriafor identifying functions and objects. Because COBRA permits representation of objects,
the level of information hiding supported exceeds that available within RTSA. A final extension
of note provided with the COBRA method is atechnique for behavioral scenario analysis.
Scenario analysis yields a more rigorous devel opment of the necessary state transition diagrams
than is possible using RTSA.

For the AGMS problem, our COBRA analysis is documented on pages C-1 through
C-54. The system context diagram (C-2) mirrorsthat given in the RTSA specification; however,
we immediately decompose the problem into three subsystems, each viewed as aggregate
objects, illustrated on C-3. One subsystem, for real-time control, is a pump object (one instance
of this object will exist for each pump in a given gas station), one is a communications (server)
object, and the other is a gas station (real-time coordination) object. Here, each of the external
data and control flows are allocated to one of the subsystems, and data and control flows between
the objects are identified. The subsystem context diagrams on C-4, C-5, and C-6 represent each
subsystem’s context, showing other subsystems, when inter-subsystem data and control flows
exist, asterminators. This completes our COBRA environmental model for the AGMS. Next,
we devel oped the behavioral model.

We developed one behavioral model for each of the three subsystems we identified in our
environmental model. A COBRA behavioral model consists of: 1) data/control flow diagrams,
2) adatadictionary, 3) psuedo-code for each leaf-level datatransform, and 4) a state transition
diagram for each control transform. In addition, the scenario analysis supporting the
development of the state transition diagrams becomes part of the behavioral model. We included
the scenario analysis apart from a specific subsystem because we used the scenario analysis to
verify and correct our state transition diagrams. Thus, we viewed the scenario analysisas a
system-level specification, rather than a subsystem-level specification.

Our behavioral model for the pump subsystem can be viewed on pages C-8 through C-16.
C-9 provides the top-level view of the subsystem through a data/control flow diagram. Here, we
decompose the pump subsystem into five objects: a Pump Control object (1.1), aSwitch (1.2), a
Card Reader (1.3), LEDs (1.4), and a Gas Dispenser (1.5). Each of these, except the Pump
Control object, are leaf objects, and, so, a psuedo-code specification for each isincluded with the
mini-specification section (pages C-13 through C-15). We further decompose the Pump Control
object on C-10 into a Control Pump control object (1.1.1) and four supporting functions:
Authorize Transaction (1.1.2), Establish Transaction (1.1.3), Complete Transaction (1.1.4), and
Reject Transaction (1.1.5). Each of these |leaf-level datatransformsis further specified with

Object-Oriented Analysis and Design of Concurrent, Real-Time Systems May 25, 1998

puesdo-code. We further specify the control object with a state transition diagram show on C-16.
We document data items for the pump subsystem on pages C-11 and C-12.

Our behavioral model for the communications subsystem can be seen on pages C-20
through C-26. (Somehow, we managed to include two pages numbered C-26. Here, we refer to
thefirst of these.) C-21 provides the top-level view of the subsystem through a data flow
diagram. We included no control objects in the communications subsystem. We further
decompose the Send to Link function (2.5) on C-22. Thus, we decomposed the communications
subsystem into seven leaf-level datatransforms, or functions. Add to Rev List (2.1), Decode
Message Header (2.2), Analyze Link State (2.3), Add to Tx List (2.4), Transmit Message (2.5.1),
Save Credit Transactions (2.5.2), and Restore Credit Transactions (2.5.3). We provide
puesdo-code for each of these functions on pages C-23 and C-24. We give adata dictionary for
the communi cations subsystem on pages C-25 and C-26 (the first one).

Our behavioral model for the gas station subsystem is exhibited on pages C-26 (the
second of the C-26's) through C-30. C-27 shows the entire subsystem on one data/control flow
diagram, including three objects and three functions. We specify the Control Gas Station control
object (3.1), and its three supporting functions (Send Alarm Message (3.4), Send Opens (3.5),
and Send Closes (3.6)), with a state transition diagram (C-30) and psuedo-code specifications
(C-29), respectively. Our subsystem design also includes two device objects: Detector Array
(3.2) and Alarm (3.3). We further specify these objects with psuedo-code on C-29. Weinclude a
data dictionary for the gas station subsystem on C-28.

The final part of our COBRA analysisfor the AGMS entails an analysis of various
behavioral scenarios, as documented on pages C-31 through C-52. We used these scenariosto
verify our two state transition diagrams, as shown on pages C-53 and C-54. We describe each
scenario that results from an external event (C-31-1 through C-31-4), we show how each scenario
flows through our AGM S (C-32 through C-52), and then we relate each scenario to our two state
transition diagrams (C-53 and C-54).

From our COBRA model, we now move on to examine a method that relies on objects
and object-oriented concepts as the basis for problem analysis. We continue to use the AGMS as
our problem statement.

C. OMT -- Objects Most Telling, Objects Most Timeless

The Object Modeling Technique (OMT) represents a problem from an object-oriented
point of view, but uses three sub-models to do so. The object model provides the fundamental
view of the problem. The object model describes the structure of objects within a problem, the
rel ationshi ps between the objects, the attributes of each object, and ultimately, the functions, or
operations, of each object. The dynamic model yields a description of those aspects of a problem
that deal with issues of timing, sequencing, and control. The functional model represents those
aspects of a problem that require transformations of values, independent of when those
transformations occur. These three models, object, dynamic, and functional, are to be viewed as
related, with the object model being fundamental. The object model provides the main,
integrating view of aproblem analysis. The operations in the object model correspond to events
in the dynamic model and functions in the functional model. The dynamic model describes

8

Object-Oriented Analysis and Design of Concurrent, Real-Time Systems May 25, 1998

control regimes for objects that require such. The functional model contains functions that are
invoked through object operations or through actions in the dynamic model. Functions will
operate on attributes within the object model. The functional model might also describe
constraints on various object attributes.

The major motivation for OMT appears to be the philosophy that object modeling yields
aview that will be easiest to understand by the customer and the analyst, designer, and
programmer, and that object models provide a fundamental, problem-oriented, structure more
likely to endure the vicissitudes of changing requirements. For this reason, we have dubbed the
OMT acronym with two alternate specifications. Objects Most Telling (easier to understand)
and Objects Most Timeless (more likely to endure).

For the AGMS problem, our OMT specification comprises pages D-1 through D-54. Our
Object Model for the AGMS, pages D-1 through D-9a, includes: a basic object model (sans
operations) (D-2), an object dictionary (D-3 through D-9), and a complete object model
(including operations) (D-9a). We will present a description, in alittle while, of how we
developed this object model. Sufficeto say for now that our preliminary object model and a
draft of the object dictionary was developed first, and that a complete object model and final
object dictionary was produced only after the dynamic and functional modeling were compl eted.

Our dynamic model encompasses the five state charts shown on pages D-10 through
D-15. In due course, we will discuss how this model was devel oped.

Our functional modeling warrants some discussion. We originally attempted to develop a
functional mode! following the guidelines presented by Rumbaugh, et al.*> The results of our
efforts are documented on pages D-16 through D-34. These pages begin with a system context
diagram (D-17) and progress through several levels of data flow diagram decomposition (D-19
through D-26). We were most unhappy with the outcome of this exercise. Many of the data
transformations are stimulated by unseen control transforms (the functional model is restricted to
datatransforms). Another source of concern isthe intent of the functional model. The functional
model is to help us define operations on objects we defined in the preliminary object model, and
yet, not objects are included in the functional model. Despite our misgivings, we completed the
functional model with psuedo-code, function descriptions for leaf-level data transforms (D-27
through D-31) and with adata dictionary for the functional model (D-32 through D-34).

Because we found our functional model to be confusing and, potentially, of little use for
identifying operations in our object model, we developed an aternate functional model (pages
D-35 through D-54). We began our aternate model with the same context diagram (D-17,
repeated as D-36) with which we started our original functional model. From the context model,
we decomposed the AGMS into a set of objects (D-37) using our preliminary object model asa
guide. Theinitial decomposition, into an object communications diagram, includes two
aggregate objects (Pump and Gas Station) and one leaf-level object (Communications Link).
Here we allocated external data and control flows to the objects, and we identified, using mainly
the dynamic model, some event flows between object. In this model, event flows are viewed as
function flows where one object calls afunction in another. For example, the AUTHORIZED
flow from the Communications Link object to the Pump object isviewed asif the
Communications Link is calling an AUTHORIZED function within the Pump.

Object-Oriented Analysis and Design of Concurrent, Real-Time Systems May 25, 1998

The Gas Station aggregate object is further decomposed, as shown in the object
communications diagram on D-38, into four |eaf-level objects: Smoke Detector, Heat Detector,
Gas Station, and Alarm. Again, these objects come from the preliminary object model.

The Pump aggregate object is decomposed, as shown in the object communications
diagram on D-39, into nine leaf-level objects. Card Reader, Cash Card, Credit Card, Cash
Transaction, Credit Transaction, LED, Gas Dispenser, Switch, and Pump. These objects also
appear on the preliminary object model.

Once we defined the hierarchy of objects as a set of object communications diagrams
OCDs), we transferred events from the dynamic model to the OCDs. This helped us verify the
flow of events through the object model and forced us to specify the inter-object communications
requirements of the AGMS. From here, we used the attributes in the preliminary object model to
document which objects get and set the attributes. We placed these function flows on the OCDs.
Finaly, we iterated over the OCDs, using the dynamic model and the preliminary object model
asour guide, to identify additional inter-object function flows that are needed. Then, we
transcribed those flows onto the OCDs.

After completing the analysis of our OCDs, we identified those objects that required a
more detailed functional model. For each such object, we created an object function diagram
(OFD). Our OFDsfor the AGMS are shown on D-40 through D-46. Callsto the data transforms
on the OFDs can be traced from the OCDs (except where specific calls are made from within an
object), but the OFD approach truly allows the specification of an object’s functions independent
of the specific context in which the object will be deployed. Thisindependenceisakey
advantage of object-oriented modeling.

The OFD, our own invention, coupled with the OCD, enabled us to tie the functional
model to the object and dynamic models. Thelogical coherence we achieved enabled usto
produce a functional model consistent with the object view of OMT. Functional modeling as
defined by Rumbaugh, et al.*?, we found to be divorced from the object model. This separation
leads easily to alogical incoherence between the object, dynamic, and functional views of an
OMT model. Such logical incoherence creates difficulties when allocating functions to the
object model. We found that our use of OCDs and OFDs made for an easy allocation of
functions to objects.

To complete our own functional model of the AGMS, we created object function
descriptions (D-47 through D-54) for each data transform identified on an OFD. Each function
description is shown using psuedo-code. We then updated our object dictionary to include a
specification of the calling sequence for each function from our function descriptions. Finaly,
we updated our preliminary object model (D-2) to include the allocation of functions to object
operations, thus producing our complete object model for the AGMS (D-9a).

Now we propose to describe the process we used to create our OMT model of the AGMS.
The reader who is uninterested in this discussion can certainly move ahead to Section IV where
we describe two aternate designs for a solution to the AGMS problem. One design begins with
our COBRA specification and uses ADARTS to develop a solution. The other design begins
with our OMT specification and uses OODARTS to develop a solution. The interested reader
can press ahead to understand how we created our OMT model.

10

Object-Oriented Analysis and Design of Concurrent, Real-Time Systems May 25, 1998

Our first job was development of the preliminary object model from the problem

statement. We employed a set of steps provided by Rumbaugh, et al.*?

1

© © N o 0o M WD

[ERY
o

|dentify candidate objects.

Discard inappropriate objects.

Initiate adata dictionary. (We enlarged thisto become an object dictionary.)
|dentify candidate associations.

Discard inappropriate associations.

|dentify candidate attributes.

Discard inappropriate attributes.

Refine inheritance.

Test access paths through the model.

. Iterate on 1 through 9. (Thisiteration is continuous during dynamic and functional

modeling aswell.)

The Rumbaugh book provides many suggestions for how to carry out each of these steps. We
found the suggestions given quite useful. We were able to devel op a reasonable object model for
the AGMS after reading the Rumbaugh book, and without ever having developed previously an
object-oriented model. We had the greatest difficulty with the identification of relationships.
We kept trying to specify functional relationships, rather than structural relationships. Once we
overcame this impediment, our modeling proceeded smoothly. The results we obtained from
following these steps are shown below as Figure 2.

11

Object-Oriented Analysis and Design of Concurrent, Real-Time Systems May 25, 1998

AGSM OBJECT MODEL

Remote
Central Customer

Facility

K H

a @a

> s
Card

Detector Communications identification
Link number

threshold Status

S e RCV LIST
Fencor data TXLIST
CREDIT

TRANSACTION
LIST
Corporate Cash Card
Uses Credit Card

cash value

Gas Station
account

number

Heat g status

Detector M Station Id

Transaction

H
P |
o
r <> cost of gas
Smoke limit

Detector 8
Alarm
Credit
Pump .
Serves | Transaction
status
status

ID
Station Cash
<> Transaction
‘ ‘ ‘ Serves
Partof
Partof
Gas ‘ ‘

Dispenser

sisanbay
sazioiyiny

LED Switch Card Reader

amount
dispensed

price per status
gallon

Figure 2. Preliminary AGMS Object Model

We next focused on creating the dynamic model. We began by following the procedure
recommended in the Rumbaugh book.

1. Prepare scenarios.

2. Simulate the user interface.
3. Identify events.

4. Build state charts.

5. Match events with objects.

We defined scenarios by identifying external events that arrived into the AGMS. We categorized
these events by source and destination. We envisioned a dynamic entity as the destination for
each event. Thisimmediately led us to define state charts for the communications link, for the
gas station, and for the switch. Upon iteration, we identified dynamic objects that would create
internal events, and we discovered the destination of those events. This process led us to define a
state chart for the pump. We identified the need for a state chart in the detectors only after

12

Object-Oriented Analysis and Design of Concurrent, Real-Time Systems May 25, 1998

considering the mechanism they would use to detect emergency conditions. Here we decided
that each detector should only send one internal event for each time the detector found that the
threshold had been crossed in an upward direction. This requirement could best be implemented
with a state chart.

Before going on, we would like to make some comments on state charts, since they
provide a more extensive set of semantics than the state transition diagrams used in RTSA and
COBRA. Wewill key our comments to the state chart for the pump as shown in Figure 3.

OPEN from Gas Station

CLOSE from Gas Station

losed Opened

CASH CARD|
INSERTED /| CREDI[T CARD INSERTED /

Create Cash Create|Credit Transaction

Transaction NOT|AUTHORIZED/
reject transaction

aiting

uthorization

entry: authorize
transaction

AUTHQORIZED [Switch is not On]

uthorized Stopped from Gas
Dispensef
CLOSE from Gas Station /

Eject Card

CLOSE from
Gas Station /
Eject Card

IStopped from Gas Dispenser Wait On Done
entry / Send Stop
Dispensing to

Wait On Stopped
entry / Send Stop
Dispensing to
Gas Dispenser
exit / complete
transaction

ON from Switch

Gas Dispenser
exit / complete
transaction

AUTHORIZED [Switch is On]

Dlspensmg Stopped from Gas
Dispenser /

. Light "Card Value Used" LED,

do: Dispense Gas | complete Transaction

OFF from Switch

CLOSE from Gas Station

Figure 3. Pump State Chart From OMT Dynamic Model Of AGMS

State chart notation represents states as rectangles with rounded corners. The state names
arewritten in bold in the upper left-hand corner of astate. This provides room to annotate the
state with three semantic devices: 1) aset of actions (following entry/) taken anytime a stateis
entered, 2) a set of actions (following do:) performed continuously while in a state, and 3) a set
of actions (following exit/) taken upon leaving a state. The entry/ and exit/ notations enable the
analyst to avoid repeating identical actionson all transitionsinto and out of a state, and the do:
notation replaces the enabl e/disable operations on RTSA and COBRA state transition diagrams.
Of course, each transition into and out of a state can also be labeled with actions taken only
during that transition. The precedent rules are as expected: first, the actions on the specific
transition into a state (see the Waiting Authorization state in Figure 3) are executed, followed

13

Object-Oriented Analysis and Design of Concurrent, Real-Time Systems May 25, 1998

by those associated with an entry/ (see, again, the Waiting Authorization state) notation in a
state. Then, whilein the state, al do: actions (see the Dispensing state in Figure 3) are
continuously performed. Upon leaving a state, first the actions associated with the exit/ (see the
Wait On Stopped state in Figure 3) notation in the state are performed, followed by any actions
(see the STOPPED from Gas Dispenser transition from the Dispensing state in Figure 3) on the
specific transitions out of the state.

Each transition is activated by a specific named event with the NAME in caps (see, for
example, the CREDIT CARD INSERTED event on atransition leaving the Opened statein
Figure 3). Optionally, the name can be modified by afrom object, (for example, asin the
CLOSE from Gas Station event on the transition leaving the Opened state in Figure 3) denoting
the name of the object that sent or caused the event. An additional modifier can constrain a
transition by placing a condition on the named event. Such conditions follow the event name,
and the optional from modifier, and are enclosed in [square brackets] (see, for example, either
AUTHORIZED event that causes atransition from the Waiting Authorization state in Figure
3). When actions occur during atransition, they are listed after a/ that follows the event name
and modifiers (for example, see the CLOSE from Gas Station event that causes an Eject Card
action during the transition between the Waiting Authorization and Closed statesin Figure 3).

These additional notational conveniences of state charts provide only superficial
enhancements to state transition diagrams,; however, the more regular notation of state charts
probably improves the potential for automated tool support. An additional conceptual
improvement that state charts do provide, however, isthe ability to hierarchically nest and to
sequentially decouple finite state machines. Inthe AGMS problem we did not use these features
of state charts. The interested reader is referred to the Rumbaugh book, and to references there to
work by Harel, for afuller accounting of state chart notation.

Once the dynamic model was "completed” (please be aware that here, as with the object
model, significant and continuous iteration is required), we developed the functional model,
beginning with a system context diagram. We previously discussed the process we followed to
decompose the system into Object Communication Diagrams and then to Object Function
Diagrams and finally to Object Function Descriptions. Once the dynamic and functional models
were complete, we began to add operations to our preliminary object model.

The Rumbaugh book suggests several sources for identifying object operations. We
recount those sources here.

1. From the object model (i.e., gets and sets on attributes).
From eventsin the dynamic model.
From transition and state actions and activities (i.e., do: actions).

From functions within the functional model.

o A~ W DN

From shopping lists (i.e., agood object of this type should have these functions).

Aninitial decision we faced concerned events passed between the state charts. We could
represent each event arriving at an object as an operation of that object, or we could choose to
encapsul ate the entire state chart within a single operation of the receiving object. We chose to

14

Object-Oriented Analysis and Design of Concurrent, Real-Time Systems May 25, 1998

encapsulate the state chart in asingle operation. Usually, we denoted this operation by the name
process_event. A second decision we faced concerning the state charts was whether to represent
the generation of events with specific send operations, or to hide event generation within the
process_event encapsulation operation. We chose to represent event generation explicitly.

After generating operations from the dynamic model, we turned our attention to the
functional model. Here, we created operations for each function identified in the functional
model for each object. Thiswork was greatly simplified because our functional model was
created within the context of our preliminary object model. We then added any operations that
supported the internal operation of specific objects, but which seemed perhaps useful in some
contexts when accessed from outside the object. Thiswas alimited application of the shopping
list suggested by Rumbaugh.

We had to step somewhat beyond the guidance provided in the Rumbaugh book if we
were to define operations to support modeling of polymorphism, coupled with inheritance.
Polymorphism appears in the Rumbaugh book on three pages. On page 2, Rumbaugh, et al.,
explain that polymorphism means that the same operation may behave differently in different
classes. They fail to inform the reader that polymorphism can be combined with inheritance to
produce some powerful results. On page 25, they explain that when classes share polymorphic
operations each definition of the operation must have the same number and type of input
parameters and the same return result, as well asasimilar intent. Finally, on page 328, they
mention polymorphism in connection with a discussion of the CLOS language. The limited
discussion of polymorphism contained in the Rumbaugh book is simply one example of what
John Palmer terms gross concept neglect.™

John Palmer explains that almost nothing is discussed about the concept of polymorphism
in any of the most popular object-oriented analysis and design works, including Coad-Y ourdon?,
Shlaer-Méllor', and Rumbaugh®. Palmer goes on to explain why polymorphism is an important
object-oriented analysis and design concept. He gives four reasons.

1. Polymorphism can reduce the complexity of operation functional specifications.

2. Inclusion of polymorphism in object-oriented analysis can reduce the conceptual gap
between analysis and object-oriented design.

3. Polymorphism is consistent with the way in which traditional analysis methods have
evolved (i.e., precisely defined functions have been identified over time and have become
standards for analysis).

4. Polymorphism is aconcept that parallels the way userstypically think (i.e., people often
think of the same function carried out differently depending on the context).

Because we intended to take our OMT specification on to an object-oriented design, we decided
that polymorphism should be employed in the analysis. Fortunately, OMT provides for abstract
operations, and, indirectly, for redefining operations that have been given default behavior in a
superclass.

Recall from the preliminary object model (Figure 2 or page D-2) that we identified three
cases of inheritance: 1) Detector (inherited by Heat Detector and Smoke Detector), 2)
Transaction (inherited by Credit Transaction and Cash Transaction), and 3) Card (inherited by

15

Object-Oriented Analysis and Design of Concurrent, Real-Time Systems May 25, 1998

Corporate Credit Card and Cash Card). In each of these cases we employed polymorphism. At
this stage we will introduce the complete object model, shown as Figure 4.

Remote

Central Customer
Facility —
H H
a a
Detector ! s
o
threshold Card
status Communications identification
processed Link number
sensor data setid number
read {abstract}
monitor sensor
send threshold
exceeded
process change
Corporate Credit Cash Card
—‘ Uses Card cash value
account number
Gas Station get account number set cash value
set account it number get cash value
Hoat status
Detector |8-<>| Stationld Transaction
+ process event t - cost of gas >
fopen pus o limit c
lose pump: -] Ed
send alarm messagp s et_cost_of_gas =
read 2 et_limit <3
o 7 omplete {abstract} @
P | luthorize {abstract)| 2]
D eject {abstract)
a
Ir
@
o + -
Pump Serves Tr;rse:cltion
Smoke Alarm status
Detector ID Meormmiete 1
status Station complete
authorize
“td process event t ‘ reject Cash
set i
Tead Transaction
Serves
| ? complete
Partof
[Part-of Part af authorize
Gas ‘ reject
Dispenser
LED Switch Card Reader
status
lhandle switch interrupt write
lprocess event Eject
send switch on read
light ksend switch off

D-9a AGSM COMPLETE OBJECT MODEL

Figure 4. Complete Object Model for the AGMS Problem

In the case of the Detector superclass, we defined an abstract operation, read. (An
abstract, or virtual, or deferred operation is one that defines what, but not how. No class
containing an abstract operation may ever be instantiated, but such a class can be inherited.) In
essence, the Detector class embodies all of the behavior of a detector except for the read
operation. A read operation must be defined by any class that inherits the Detector class. Thus,
in our specification of the AGMS problem, aHeat Detector and a Smoke Detector behave
identically, except for how they read the sensor data. We employed a similar approach when
defining the Transaction class.

The Transaction class contains three abstract operations: 1) complete, 2) authorize, and
3) rgject. The behavior of each of these operationsis defined differently for each of the
subclasses of Transaction (i.e., Credit Transaction and Cash Transaction). Now, whenever a
complete, authorize, or reject operation is invoked on a Transaction object, the correct behavior

16

Object-Oriented Analysis and Design of Concurrent, Real-Time Systems May 25, 1998

will occur for the specific type of Transaction that is referenced. For the complete and authorize
operations, a Card classis used as an input parameter. Thisleads usto our final use of
polymorphism in the OMT analysis of the AGMS.

The Card class, although meant to be inherited, can be instantiated because we have
defined default behaviors for every operation of the class. The default behaviors give alogically
consistent, although not very useful, set of operations for the Card class. The Cash Card class
inherits Card, and redefines the set cash value and get cash value operations. In an
object-oriented design, the set account number and get account number operations might be
suppressed in the definition of a Cash Card, but in OMT no notation permits such suppression;
therefore, we chose to let the default operations obtain when no redefinition isgivenin a
subclass. Since the default operations were defined to work properly, no problem will occur.

The Corporate Credit Card class inherits Card, and redefines the set account number and
get account number operations. The default definitions for get cash value and set cash value
stand in this case.

After weidentified all the operations needed for our AGM S object model, we
documented the operation behaviors, using psuedo-code, on pages D-47 through D-54. We then
updated the object dictionary (D-3 through D-9) to reflect the specification of the signature for
each operation, and, finally, we produced a complete object model (D-9a) by adding to the
preliminary object model the operations associated with each object class. This completes our
OMT specification for the AGMS problem.

V. Concurrent Design Solutions

In this section of the paper, we present two design solutions for the AGMS problem. One
solution, included as Appendix E, begins with our COBRA specification and applies the
procedure and notation from the ADARTS method.® The second solution, included as Appendix
F, begins with our OMT specification and applies an Object-Oriented Design Approach for
concurrent, Real-Time Systems (OODARTS). Rumbaugh, et al., provide very little guidance for
creating a concurrent, real-time design from an OMT specification. (The skeptical reader is
referred to Chapter 9 of the Rumbaugh book.?) ADARTS provides a good method and notation
for design of concurrent systems, but does not assume a strictly object-oriented environment.
OODARTS was devised by usto facilitate the generation of an object-oriented design from an
OMT specification. We derived OODARTS from the solid foundation laid by the ADARTS
method and notation. In most cases, we adopted ADARTS techniques with only slight
adaptations, as required for an object-oriented environment. We will explain our approach in due
course, but first we describe our ADARTS design.

A. ADARTS-- A Recipe for Solutions

ADARTS can be thought of as arecipe for concurrent, real-time solutions because, like a
recipe, ADARTS delineates steps for producing a dish (the design) from a set of ingredients (the
products of an analysis, such as RTSA or COBRA). Also like arecipe, the delectability of the
dish varies with the skill of the chef, yet even an inexperienced cook can produce an edible dish
simply by following the steps provided.

17

Object-Oriented Analysis and Design of Concurrent, Real-Time Systems May 25, 1998

ADARTS provides a three-phase approach to system design. In phase one, tasks are
identified, using a set of criteriafor task structuring, and atask architectureis created. An
overview of our ADARTS task architecture for the AGMS is given on pages E-1 through E-5.
By applying the ADARTS task structuring criteriato the COBRA data/control flow diagramsin
Appendix C, we created the task architecture shown on E-3, and reproduced below as Figure 5.
The architecture is repeated on E-4, where the inter-task message flows are annotated with
numbers to facilitate a discussion of the message flows through the system of tasks.

For each task identified, ADARTS requires that atask behavior specification (TBS) be
produced. For our AGMS design, the task behavior specifications are given on pages E-6
through E-27. Each TBS: 1) names the task, 2) describes the input and outputs, categorized as
events, messages, and data, of the task, 3) identifies references to any information hiding
modules (IHMs, as discussed below), 4) specifiesthe ADARTS criteria used to identify the task
and provides references to the control and data transformations in the problem analysis that are
included within the task, 5) indicates the tasks timing characteristics and priority, 6) specifiesthe
thread of control for the task, and 7) documents any errors that the task detects or avoids.

The TBSs are produced initially from the problem analysis, and then, in the third phase of
the ADARTS method, are updated to include references to, and operations from, information
hiding module (IHM) specifications, the product of the second phase of the ADARTS method.
Our IHM specifications for the AGMS design are shown on pages E-28 through E-38. IHMs are
identified using a set of module structuring criteriaincluded within the ADARTS method. For
each IHM in the design, ADARTS requires a specification that: 1) names the module, 2)
describes the information hidden within the module, 3) identifies the ADARTS structuring
criteria used to define the module, 4) documents any assumptions made about the module, 5)
anticipates any changes that will be made to the module, and 6) specifies each operation
included in the module.

Once the IHMs are specified, ADARTS requires that a system architecture be produced
by allocating modulesto tasks. This system architecture design comprises the third phase of the
ADARTS method. Also, during this phase of the design, ADARTS requires that the TBSs be
updated to account for the IHMs. This amounts to including IHMs in the appropriate reference
section of each TBS and to adding IHM operation calls to the TBS thread of control section,
when appropriate. Our ADARTS system architecture for the AGMS problem is shown on pages
E-39 through E-41. We can now run quickly through the ADARTS design we produced from
the COBRA specification of the AGMS problem.

18

Object-Oriented Analysis and Design of Concurrent, Real-Time Systems May 25, 1998

Timer Message Message
Event Received Sent
Interrupt] Interrupt
Smoke .
Gas Station Transmif it Qutgoin
Sensor Control Messages g 9
Data Queue Queue Messages
DETECTOR GAS COMMUNICATIONS
STATION
ARRAY CONTROL LINK
—_— Detector .
Heat Comman d Incoming
Sensor r Messages
Data
Link
Al State
arm Interrupt
Commandg
Alarm
Command
Pump —‘

{ Card Control One Set Of
Inserted Queue These Tasks
Inteeb\%‘ PUMP _ For Each
Card CONTROL Transaction Pump
< > —

CARD Reader LED
card READER | Comman d Commands
eader Dispenser
as

Commands: Commands
‘

mmmmm ‘
Meter
Card ‘

Display
Data

Switch
Activateg
Interrupt

Switch
Deactivated

Interrupt

Figure 5. ADARTS Task Architecture for the AGMS from a COBRA Specification

Asshown in Figure 5, three tasks comprise the gas station (Detector Array, Alarm and
Gas Station Control), one task provides communications services, and a set of four tasks control
each pump within agas station. The Card IHM is shared between the Card Reader and Pump
Control tasks, and the Transaction IHM is shared between the Pump Control and Gas Dispenser
tasks.

The reader can probably discern that ADARTS shows tasks as parallelograms and IHM s
asrectangles. Message flows, shown as arcs between tasks, can be loosely-coupled (flowing into
queues) or tightly-coupled, without reply (flowing through half rectangles) or with reply (flowing
through rectangles that have been flayed and twisted -- note that no icons for tightly-coupled
messages with reply are shown in Figure 5). External events are shown as jagged lines with
arrowheads attached. For a detailed accounting of the ADARTS notation, the reader is referred
to the creator of ADARTS.?

After we identified the IHMs in our design, we allocated those IHMs to the AGM S tasks
to create a system architecture diagram, as shown below in Figure 6. We will describe the
allocations we made.

19

Object-Oriented Analysis and Design of Concurrent, Real-Time Systems May 25, 1998

Transmit Communications Link

Messages

Gas Station Gas Station Control
Control
Queue

Outgoing
Messages

Gas Station

Detector
Command

Incoming
\Messages
Message
Sent
Interrupt

Received
Interrupt

Link
State
Interrupt

Alarm
Commands

-«—
Alarm

Command

One Set Of

These Tasks
For Each

Pump

Pump Pump Control

Card Control

Inserted Queue
Int% Card Reader
<>

Transaction

Card
Data

Reader
Command
gmma

Card
eader
[Commands!

ED Commands
Gas Dispenser

Gas
[1[_Ipispenser
]

Switch

Dispenser

Commands
Meter

- Data

Display

Data

Switch
Activateg
Interrupt

Switch
Deactivated
Interrupt

Figure 6. ADARTS System Architecture for AGMS from a COBRA Specification

Within the Detectors task, we included one IHM for each detector in the gas station.
Each specific IHM depends on the type of detector, smoke or heat. We placed the gas station
IHM, encapsulating the gas station control state transition diagram, inside the Gas Station
Control task. Inside the Communications Link task, we placed aLink IHM that provides all
operations needed to handle communications services. We placed the Pump IHM, encapsulating
the Control Pump state transition diagram, inside the Pump Control task. The Gas Dispenser
IHM, which hides the interface to the gas dispenser hardware, was placed into the Gas Dispenser
task. The Card Reader IHM, which hides the details of the card reader hardware, we alocated to
the Card Reader task. Since the Card and Transaction IHMs had already been placed between
tasks, we had merely to add the operations supported by the IHMs and then to show which
operations were invoked by which tasks.

The interested reader is advised to consult the TBS for each task and the specification for
each IHM to gain an understanding of the operation of the system. Enough detail is provided so
that a programmer can begin implementation of tasks and modules. For those readers who
simply desire a more comprehensive overview of our ADARTS design for the AGMS we

20

Object-Oriented Analysis and Design of Concurrent, Real-Time Systems May 25, 1998

recommend the task and system architecture overviews beginning on pages E-2 and E-40,
respectively. Now, we move on to discuss our OODARTS design for the AGMS.

B. OODARTS-- Altering the Recipe

Although ADARTS makes awonderful recipe for obtaining designs from analyses, the
method was devel oped absent additional ingredients that come with a full, object-oriented model.
The ingredients available from an object-oriented analysis technique, such as OMT, tend to be
fewer, but richer than those available from RTSA and COBRA. RTSA provides functions as
ingredients for the design. These functions can be viewed as individual herbs and spices.
COBRA adds aobjects in addition to functions. Such objects can be viewed as prepackaged
combinations of herbs, spices, and other seasonings. OMT ingredients for the design are all
prepackaged, i.e.,, OMT provides only objects. In addition, OMT ingredients can be altered
through specia handling that takes advantage of the advanced properties of such ingredients.
OODARTS provides arecipe that employs some of the specia handling available with OMT
ingredients. And OODARTS builds on the existing recipe given by ADARTS.

ADARTS can be used to create a decent design from an OMT specification, but a number
of concepts, such as inheritance and polymorphism, in the object-oriented paradigm cannot be
exploited. Also, astrict object-oriented model requires that all unitsin the design be represented
as objects, while ADARTS, relying on tasks and information hiding modules as its major
building blocks, does not recognize the concept of an object. On the other hand, ADARTS
provides the multiple threads of control needed in a concurrent design, while object-oriented
approaches hand-wave about each object potentially executing under its own thread of control.

ADARTS provides criteriafor structuring tasks from objects and functions, for
structuring IHMs from objects and functions, and for allocating IHMs to tasks. When starting
from an OMT specification, al functions have already been allocated to objects, and so, thereis
no need to allocate functions. And, since each object can potentially possess athread of control,
the main goal of an object-oriented design method should be to determine which objects have an
independent thread of control (i.e., are active objects) and which do not (i.e., are passive objects).
Then, for each active object, athread of control must be specified.

On the basis of these observations, we devised an Object-Oriented Design Approach for
concurrent Real-Time Systems (OODARTS), from the foundation established by ADARTS.
While afuture refinement of OODARTS might show a greater divergence from ADARTS, our
initial development of OODARTS can be traced easily from ADARTS. We will explain our
approach before presenting our OODARTS design for the AGMS.

The first phase in OODARTS requires that an active object (AO) architecture be
developed. An AO possesses aindependent thread of control; thus, an AO isanalogousto an
ADARTS task, except that an AO is an object. We require that each AO have at |east two
operations: 1) Create and 2) execute. The Create operation establishes the connections to other
AOQOsin the architecture, sets up initial attribute values, and encapsulates the creation of any
passive objects used by the AO. An AO can have any additional operations required. We can
envision an AO class that has default Create and execute operations, that isinherited by each AO

21

Object-Oriented Analysis and Design of Concurrent, Real-Time Systems May 25, 1998

in the design, and that is refined to fit the behavior required for the type of object that is being
made active.

To facilitate communication among AOs, we define an number of other concepts. An
ACTIVE QUEUE provides a receptacle where |oosely-coupled messages passed to an AO can be
placed until the AO requests them. Thisis analogousto an ADARTS message queue. We can
also envision an ACTIVE PRIORITY QUEUE, analogous to an ADARTS priority message
queue.

Messages can be sent by AOs. Messages sent to other AOs are analogous to ADARTS
tightly-coupled messages. Messages sent to ACTIVE QUEUES are analogous to ADARTS
loosely-couple messages. Messages sent to ACTIVE PRIORITY QUEUES are analogous to
ADARTS loosely-coupled messages sent with a specific priority. We define an operation send
MESSAGE to DESTINATION [with REPLY]. Here MESSAGE can be viewed as a system
object that can be inherited. The send operation causes different behavior depending on a
number of factors. If the DESTINATION specifies an ACTIVE QUEUE, then the MESSAGE is
placed at the end of the identified queue and the sender can continue operation. If the
DESTINATION specifiesan ACTIVE PRIORITY QUEUE, then the MESSAGE is placed at the
end of the indicated priority slot for the identified queue and the sender can continue. Invalid or
omitted priority designations result in the MESSAGE being placed in the lowest priority slot. If
the DESTINATION specifiesan ACTIVE OBJECT, then the MESSAGE is placed on a queue
for that object and the sender is suspended until the DESTINATION accepts the MESSAGE. If
the DESTINATION specifiesan ACTIVE OBJECT and aso includes an optional with REPLY,
then, after placing the MESSAGE on a queue for the DESTINATION, the sender is suspended
until aREPLY arrives from the DESTINATION.

An AOQ receiving messages has a number of mechanismsto use. The Wait for
MESSAGE from SOURCE primitive causes the receiving AO to suspend until a message arrives
from the specified source AO. The Await primitive causes an AO to suspend until any message
arrivesfor the AO. The Wait for MESSAGE in ACTIVE QUEUE primitive causes an AO to
suspend until a message arrives in the named queue. External events are handled by having an
AOQ create appropriate interrupt vectors, and then by assigning interrupt handlers to those vectors.
These mechanisms model the semantics available with ADARTS, but the semantics are
presented in an object-oriented fashion.

In addition to defining an AO architecture, OODARTS requires a behavior specification,
analogous to the task behavior specificationsin ADARTS, for each AO. These AO behavior
specifications. 1) namethe AO, 2) specify the inputs and outputs of the AO in terms of events,
messages, and data, 3) identify any passive object classes referenced by the AO, 4) indicate the
criteriaused for determining that the object requires an independent thread of control and
identify any passive object classes included within the AO, 5) describe how the AO is activated
and with what priority it executes, 6) detail the Create and execute operations, as well as any
other necessary operations, for the AO, and 7) define any errors that the AO detects or avoids.

Beyond the AO architecture and behavior specifications, OODARTS requires class
specifications for each passive object classin the design. Such object class specifications replace
the IHM specificationsin the ADARTS method. An OODARTS object class specification: 1)
names the object class, 2) explains what is encapsulated by the object class, 3) classifies the

22

Object-Oriented Analysis and Design of Concurrent, Real-Time Systems May 25, 1998

object class using criteriafrom ADARTS, 4) describes any assumptions made about the object
class, 5) outlines any changes that are planned for the object class, 6) defines the attributes
encapsulated within the object class, and 7) specifies the operations provided by the object class.
Aswith ADARTS, passive object classes are alocated within the AO architecture to produce a
system architecture for the design.

Using this OODARTS method, we derived a design for the AGMS from our earlier OMT
analysis. An overview of the Active Object Architecture is presented on pages F-1 through F-5.
The architecture is shown below as Figure 7.

Timer Message Message
Event Received Sent
Interrupt Interrupt
Smoke . .
Gas Sl tiol Transmif it Qutgoin
Sensor Control Messages 9 9
Data Que Queue Messages
CGAS COMMUNICATIONS
:m_ TH o
CONTROL
—_— .
Heat Incoming
Sensor Messages
Data
Link
- - gy - - /) - State
Queue Timer Interrupt
LED Interrupt
Commands LED
CONTROL
Card e One Set Of
Inserted eue These Objects
et PUMP Transaction For Each
CONTROL Pump
Card

Data CARD

READER

Card CONTROL «
eader
ICommands!

‘ Card
SWITCH
MONITORING

Switch
Activateg Deactivated
Interrupt Interrupt

Dispenser

Commands
mmmmm

GAS
DISPENSER
CONTROL

Meter
Data

Dlsplay
Data

Reader ‘

Switch

Figure 7. OODARTS Active Object Architecture for the AGMS from an OMT Specification

In Figure 7, each active object is shown as a parallelogram, while each passive object that
is used by multiple active objects is shown as arectangle. The other notation is also adopted
from ADARTS. The architecture we achieved from the OMT specification, using OODARTS,
was essentially the same as that we devised from the COBRA specification, using ADARTS.

The astute reader will notice some differences between the two architectures;, however, these
differences stem from different interpretations of some requirements, not from any differencein
the methods. For example, the ADARTS design included an Alarm task, while the OODARTS
design does not define an Alarm AO. This results because during the COBRA anaysis we
assumed that the alarm device needed constant pulsing to sound it, whilein the OMT analysiswe
assumed that the alarm device was a two-state device that would remain in whatever state it was

23

Object-Oriented Analysis and Design of Concurrent, Real-Time Systems May 25, 1998

set. The other difference involves LED control. Inthe COBRA analysis we assumed that if the
customer inserted an unrecognized card, then the card would simply be gjected, while in the
OMT analysis, we assumed that the "Cannot Process Card Light" would be lit before the card
was gected. The first assumption means that the LED control can be sequentially included with
the Pump Control task, while the second assumption means that two AOs, Card Reader and
Pump Control, share access to the LEDs, and, thus, an LED AQO isrequired as aresource
monitor. Had the same assumptions been made during both the COBRA and OMT analyses,
then the resulting ADARTS and OODARTS architectures would be identical.

A behavior specification is given for each AO shown in Figure 7. These specifications
can be found on pages F-6 through F-31. The interested reader is advised to scan the AO
architecture overview (beginning on F-2), and then to investigate the behavior specifications for
any AOs that appear interesting. Next, we recommend that the reader examine the system
architecture on pages F-52 to F-54, and then to skim the object class specifications for any
passive objects that seem pertinent. 1n the remainder of this section, we describe how we applied
the OODARTS method to arrive at the design in Appendix F, from the OMT specification in
Appendix D.

Our first step was to examine the object, dynamic, and functional models of our OMT
specification to identify active objects. We applied as many of the ADARTS task structuring
criteriaaswe could. We envisioned an AO for each object in the OMT specification that
possessed a state chart. Thisidentified the Detectors, the Gas Station, the Communications Link,
the Switch, and the Pump as candidate AOs. Since we envisioned that the Detectors would be
polled on aregular basis, we decided to encapsulate al of the Detectorsinto asingle AO (i.e.,
Detectors on page F-3). We found by examining the OCDs in the functional model that the Gas
Station, Communications Link, and Pump objects received input events from multiple sources,
so we retained these candidates as AOs. Gas Station Control, Communications Link, and Pump
Control. Since the Switch object interacted with external events, we encapsul ated the Switch
object within a Switch Monitoring AO.

We then examined the remaining objects from the OMT object model to identify any
additional AOs. The Card Reader object is activated by external events, so we encapsulated the
Card Reader within a Card Reader Control AO. We also found that the LED objects served
multiple AOs, and therefore we encapsulated the LED objects within an LED Control AO to
monitor the LEDs as shared resources. We found that the Gas Dispenser object could be
activated (to run under its own control and complete operations under internally recognized
conditions) and deactivated by the Pump Control AO. For these reasons, we encapsulated the
Gas Dispenser inside a Gas Dispenser Control AO.

We viewed the remaining objects, the various cards and transactions, as data
encapsulation objects that execute sequentially under control of the AOs. The card objects are
used by the Card Reader Control and Pump Control AOs, and the transaction objects are used by
the Pump Control and Gas Dispenser AOs. Although we could have moved the card and
transaction objects inside the Pump Control AO, we chose to design them as passive objects,
externa to all AOs, and shared between AOs.

The context diagram from our OMT functional model leads to a natural allocation of
external events and data to particular AOs, and so our next design decisions focused on internal

24

Object-Oriented Analysis and Design of Concurrent, Real-Time Systems May 25, 1998

communications between AOs. Here, again, the dynamic model and the OCDs from the
functional model helped us make choices. Because the Gas Station Control AO received inputs
asynchronously from the Detectors and Communications Link AOs, we defined an active queue
(AQ), called the Gas Station Control Queue. Similar reasoning, differing only in the specifics,
led us to define the Transmit Messages Queue, the Light Queue, and the Pump Control Queue.
The Card Reader Control AO serves only the Pump Control AO by awaiting Reader Commands
to arrive and then executing them; thus, we chose tightly-coupled communications between the
two AOs. The Gas Dispenser Control AO waits for start and stop Gas Commands from the
Pump Control AO and then executes them; thus, again, we chose tightly-coupled
communications between the two AOs. The details of the messages flowing into the various
AQs and between the various AOs can be mapped readily from the OMT specification. We so
mapped them, and then we documented them as message exchanges within each AO behavior
specification.

Next, we turned our attention to the passive object classes. The alocation of passive
objects among the AOs was, for the most part, decided previously, when we created the AO
architecture. Thisfollowsfrom the fact that both OMT and OODARTS use the object as the
only unit. When we created the AO architecture, we were allocating OMT objects (i.e., passive
objects). The objects were allocated either to an AO, or between several AOs. Any objects that
we did not allocate while developing the AO architecture, we allocated now. For the AGMS
design, we allocated the Alarm object to the Gas Station Control AO, because the Alarm object
coheres sequentially to the Gas Station object.

Since the passive object classes were identified during the analysis, we need only specify,
during the OODARTS design process, each object class. Here, again, most of the work was
accomplished during the analysis. We used the complete object model from the OMT analysis,
amplified by the object dictionary and the object function descriptions, to create the OODARTS
object class specifications shown on pages F-32 through F-51. After documenting the object
class specifications, we updated the AO behavior specificationsto reflect particular details of the
operations defined for the passive objects used by each AO.

Next, we updated the AO architecture diagram to reflect our allocation of passive object
classesamong AOs. This action yielded a system architecture diagram for the AGMS, as shown
in Figure 8 (and also on page F-54). Here, weidentified the two types of card object (Credit
Card, as distinct from Cash Card) and the two types of transaction object (Credit Transaction, as
distinct from Cash Transaction) that are shared among AOs. For each of these shared object
classes, we specified the operations provided by the object class, aswell asillustrated which
operations are invoked by which AOs. Where a passive object sends a message to an AO or AQ,
we depicted that aswell. Asafinal step in our OODARTS design for the AGMS, we wrote a
brief overview of the system architecture (see page F-53).

25

Object-Oriented Analysis and Design of Concurrent, Real-Time Systems

May 25, 1998

Smoke
Sensor
Data

Control

Detector

Heat
Sensor
Data

Gas Station

Gas Station

Gas Station Control

Transmit
Messages

\Commul

Received

Light
Queue

LED Control
LED

Interrupt Timer Lin
Interrupt Sta|
Inte

{il=

Commands

Card

Inserted
Im% Card Reader Control

Card
Data card
Reader

Reader
Command

Card

/ reject
/ comple!

authorize et limit

et_cost_of) g%

redit
ransaction

e
(oot
[complete

Cash
Transaction

feader

ICommands

—

Switch Monitoring

Switch

Cash Card

Switch
Activateg
Interrupt

Switch
Deactivated
Interrupt

Credit Card

Gas
Command

Gas Dispenser Control
Gas
[] Dlspenser
L]
L1] >
Commands
C 1] Meter

Dispenser
Data

Display
Data

\Messages
Message

nications Link

R
Outgoing
Messages

Incoming

Sent
Interrupt

One Set Of

These Objects
For Each

Pump

Figure 8. OODARTS System Architecture for the AGMS from an OMT Specification

Although our system architecture keeps AOs separate from the passive objects that they
encapsulate, a more integrated approach is possible. Once we identified active objects from our
OMT specification, we could have added the necessary Create and execute operations to those
objects, transforming them from their passive, OMT form to an active, OODARTS form. This
approach would work well for the Gas Station, Pump, Link, Card Reader, Gas Dispenser, and
Switch objects. (Our design would still benefit from encapsulating multiple instants of Detector
objectsinto asingle AO.) We chose to maintain a separation between the AOs defined in our
OODARTS design and the passive objects identified in our OMT specification. This choice
should enabl e the reader to see easily how OODARTS was devel oped from the ADARTS

method.
V. Evauation Of Results

In this paper we stalked an automated gas station management problem with three
analysis methods and two design approaches. We now approach the weighing station at the
game warden’s shelter. Here we must assess the results of our safari. The rules of the preservein
which we have hunted allow us to assess our results in our own words, but the game warden

26

Object-Oriented Analysis and Design of Concurrent, Real-Time Systems May 25, 1998

might come along for a spot check. We imagine that the reader will take on the role of game
warden. We begin with an assessment of the analysis techniques we used.

RTSA proved simpleto use. The concept of data flow diagramsis familiar to most
analysts, and even someone without analysis experience can catch on quickly. The concept of
finite state automata is mature. RTSA incorporates finite state automata into structured anaysis
using a natural, easily comprehended model, the control transform. The specifications produced
from an RTSA analysis are easy to understand and easy to maintain. On the other hand, RTSA
appears applicable only to small problems. RTSA analysisleads to alarge number of small
functions activated by control transforms. While the decomposition techniques supported by
data flow diagrams allow for chunking and aggregating functions, most resulting RTSA
specifications for large problems would be difficult to comprehend. Also, RTSA specifications
point to specific design decisions; thus, RTSA is not solution independent. But, then, none of
the analysis techniques we used are solution independent; RTSA seemed more solution
independent than either COBRA or OMT.

COBRA appeared more useful for analyzing large, real-time problems. The subsystem
decomposition guidelines of COBRA enable a problem to be divided into fairly independent
subsystems. Each subsystem can then be analyzed separately, studied separately, and understood
separately. COBRA builds on the concepts and notation of RTSA. This relationship between
COBRA and RTSA should enable experienced RTSA analysts to begin using COBRA without
much training. COBRA also provides a number of guidelines to help the inexperienced analyst.
Theseinclude: 1) guidelines for developing the COBRA environmental model, 2) guidelines for
decomposing a problem into subsystems (or sub-problems), 3) criteriafor determining objects
and functions, and 4) procedures for performing behavioral scenario analysis. The COBRA
guidelines help to ensure that COBRA specifications are compl ete, consistent, and repeatable.

Despite the improvements achieved by COBRA, we noticed some drawbacks to the
technique. For example, COBRA specifications contain redundant information. The behavioral
scenario analysis that devel ops the state transition diagrams and data/control flow diagrams leads
to two specifications for each state transition diagram and to many instances for some of the data
and control transforms. This provides a means to check the consistency of the analysis, but also
increases the difficulty of maintaining the specification. Another difficulty we experienced while
using COBRA involved functions and objects. Since COBRA allows the specification of both
functions and objects, we often had to decide when to specify a function and when to specify an
object. Even with the criteriaincluded in COBRA, we often found ourselves unsure when to
specify functions and when to use objects. These decisions are important because COBRA is not
solution independent. In fact, COBRA leads toward an object-based implementation, perhaps
Imagining alanguage like Adafor the ultimate implementation. For this reason, we found
COBRA to be more solution-oriented than RTSA.

Where COBRA and RTSA are related analysis techniques, OMT belongs to a different
family. We found the greatest strength of OMT to be the unifying concept of the object model.
The early stages of OMT required us to mine the problem domain for objects, attributes, and
relationships. The object model that resulted from this analysis provides the unifying framework
for the remaining stages of OMT analysis. OMT provides good guidance for identifying objects,
attributes, and relationships, although at first we had difficulty crafting the relationships properly.
Since OMT relies on an object model, we could take full advantage of object-oriented concepts

27

Object-Oriented Analysis and Design of Concurrent, Real-Time Systems May 25, 1998

such as inheritance and polymorphism. Another positive result from OMT isthat functions are
allocated to objects during the analysis, so further consideration of design issues deals only with
objects, not functions. Another strength of OMT appearsin the dynamic model. Because OMT
adopts state charts (in the place of state transition diagrams), we could take advantage of a
number of notational and semantic conveniences associated with state charts. We also found that
using OMT led us to an increased use of dynamic models. For example, using RTSA and
COBRA weidentified two state transition diagrams, while with OMT we created five state
charts. We even wondered if we might not have been wise to create additional state charts for
the Gas Dispenser and the Card Reader.

While OMT provided some useful improvements over COBRA and RTSA, we found
OMT to contain a number of flaws. Probably the most serious flaw was the lack of integration
between the functional model and the object and dynamic models. We could not readily model
the automated gas station problem as a data flow diagram without the use of control transforms.
Y et, control transforms are not permitted in the OMT functional model. To solve this
shortcoming, we developed an alternate approach using object communication diagrams and
object function diagrams. Our alternate approach allowed us to identify functions and to allocate
functions to objects in our object model. We cannot expect every analyst to develop their own
solution for functional modeling in OMT, but the solution given in the Rumbaugh book will not
always lead to a successful result. Another problem we believe exists with OMT islack of
scaling. Object models can become quite complex. OMT provides notational devicesto divide
an object model among multiple sheets of paper; however, the fundamental complexity of the
model is not improved by such notational devices. Because of this flaw, we believe that OMT
can only be applied to problems of moderate size. Were OMT to introduce a subsystem concept
and then to give guidelines for decomposing a problem into subsystems (as COBRA does), we
believe that OMT would scale to larger problems. A third fault we found with OMT islack of a
rigorous approach to develop state charts. We were always wondering where we should define a
state chart and where we should not. We also could have benefited from a precise method for
developing each state chart. (Perhaps something similar to the COBRA behavioral scenario
analysis method could be added to OMT.) A final shortcoming we noted with OMT isthat
many, if not most, design decisions are made during the analysis. In fact, al road signs from an
OMT specification point to an object-oriented implementation. We were not dismayed by this
outcome because we intended to develop an object-oriented design for the automated gas station
problem. We advise those analysts not heading toward an object-oriented design to avoid OMT
during the analysis.

After we developed our three analysis specifications for the automated gas station
problem, we produced two designs. One design used ADARTS and the other used OODARTS
(amethod we devised from ADARTYS). Here we consider the results from applying ADARTS
and OODARTS. Remember that we developed the ADARTS design from the COBRA
specification and we produced the OODARTS design from the OMT specification. We begin
with ADARTS.

ADARTS provides areliable recipe for deriving concurrent designs from RTSA and
COBRA specifications. The resulting design is Ada-based. Since many Ada-based
environments exist on a variety of processors, ADARTS designs can be readily implemented in
Ada. Evenin the absence of an Ada compiler and run-time environment, ADARTS designs can

28

Object-Oriented Analysis and Design of Concurrent, Real-Time Systems May 25, 1998

be mapped onto most real-time executives or operating systems. One possible shortcoming with
ADARTS involvesthe limited use of information hiding modules (IHMs). ADARTS
encourages IHM s to be restricted to encapsulation of data stores, device interfaces, and state
transition diagrams. Although ADARTS permits agreater use of IHMs, many practical
applications of ADARTS encapsulate objects into IHMs that are allocated inside tasks and
relegate IHM s shared between tasks to a more minor role of encapsulating data stores. Another
possible shortcoming of ADARTS is the requirement that the designer allocate both objects and
functionsto tasks. This shortcoming results from the nature of the RTSA and COBRA analysis
techniques, coupled with the fact that ADARTS is Ada-based rather than object-oriented.

We developed OODARTS as an object-oriented extension to ADARTS. OODARTS
assumes an object-oriented support environment, rather than an Ada-based support environment.
For this reason, we had to define a support environment for OODARTS. The environment we
defined combined ADARTS semantics with object-oriented concepts. OODARTS, then,
provides for full, object-oriented designs that lead naturally into an object-oriented programming
solution. Of course, an underlying object-oriented programming model for concurrent systems
must be implemented. No such model iswidely accepted nor implemented. Still, we outlined a
means for mapping a concurrent, object-oriented model onto most real -time executives or
operating systems. Our method requires that an object-oriented layer be implemented (using an
object-oriented language) above the real-time execute. Without a run-time environment to
support OODARTS some of the object-oriented features of the design must be discarded. If such
features are discarded, then ADARTS can be used to generate a design from an OMT
specification. Of course, some of the traceability to the original analysis will be lost.
OODARTS Yyields reasonable, concurrent, object-oriented designs from OMT specifications. In
fact, in our exercise with the automated gas station manager, the design resulting from
COBRA/ADARTS was identical fundamentally to the design resulting from OMT/OODARTS.
In the former case, the design can be easily taken to an Adaimplementation. In the latter case,
the design can be directly taken to an object-oriented programming implementation, provided
that an underlying OODARTS run-time environment exists.

V1. Conclusions

Two trends in the computer industry appear at odds. Onetrend is the growing need for
concurrent and distributed, real-time systems to control an increasingly digital world. The other
trend is the expanding popularity of object-oriented programming (OOP). OOP traditionally has
ignored many practical aspects of system requirements analysis and design. In fact, only in the
last few years have methods for object-oriented analysis and design (OOA and OOD) emerged.
These OOA and OOD methods are intended to provide a smooth path from problem analysisto
programming implementation. Unfortunately, many of the existing object-oriented methods
ignore problems associated with concurrency and distribution and with other requirements of
real-time systems.

In the foregoing paper, we have shown that OOA/OOD/OOP can be used to develop
effective analyses, designs, and implementations for concurrent, real-time problems. We used an
automated gas station management problem as our example. We showed how such a problem

29

Object-Oriented Analysis and Design of Concurrent, Real-Time Systems May 25, 1998

could be analyzed with some well-known techniques such as RTSA and COBRA. We also
showed how an object-oriented method, OMT, could be used to analyze the problem. We then
showed how ADARTS could be used to produce a concurrent design from a COBRA
specification. We explained how we derived an object-oriented design approach (OODARTYS)
from ADARTS and we applied OODARTS to produce a concurrent design from our OMT
specification. The two resulting concurrent designs were identical fundamentally. From this
exercise, we concluded that OOA/OOD/OOP can lead to effective concurrent designs for
solutions to real-time problems. We further concluded that the key to making a smooth
transition from OOD to OOP for a concurrent design is the existence of an underlying
object-oriented, run-time model (implemented in an object-oriented language) for managing
multiple threads of control and inter-object communication and synchronization. Such a model
would be analogous to the Ada run-time environment. Unfortunately, no such object-oriented,
run-time model is accepted widely. Without such amodel, moving from a concurrent OOD to an
OOP implementation will remain a difficult art.

30

Object-Oriented Analysis and Design Of Concurrent, Real-Time Systems May 31, 1998

VI1l. References

[1] Philip A. Laplante, Real-Time Systems Design And Analysis An Engineers Handbook,
|[EEE Computer Society Press: Los Alamitos, CA, 1993, 339 pages.

[2] P.T. Ward and S. J. Méllor, Structured Development for Real-Time Systems, Volumes|,
[1, and I11, Yourdon Press, New Y ork, 1985 - 1986.

[3] Hassan Gomaa, Course Notes On Software Design Methods, Parts| and 11, George
Mason University, Fall Semester 1992, Chapter 5: Design Approach for Real-Time
Systems.

[4] David A. Watt, Brian A. Wichmann, and William Findlay, ADA [sic] Language and
Methodology, Prentice-Hall: Englewood Cliffs, NJ, 1987, 518 pages.

[9] Hassan Gomaa, Course Notes On Software Design Methods, Parts 111 and IV, George
Mason University, Fall Semester 1992, Chapter 14: Analysis and Modeling for
Concurrent and Real-Time Systems.

[6] Hassan Gomaa, Course Notes On Software Design Methods, Parts 111 and IV, George
Mason University, Fall Semester 1992, Part 111: A Design Approach for concurrent and
Real-Time Systems (ADARTS) and Part IV: ADARTS Case Studies.

[7] Bjarne Stroustrup, The C++ Programming Language, Second Edition, Addison-Wesley:
Reading, Mass., 1991 (reprinted with correctionsin 1992), 669 pages.

[8] Bertrand Meyer, Eiffel: The Language, Prentice-Hall International: Hemel Hempstead,
United Kingdom, 1992, 594 pages.

[9] Bertrand Meyer, Object-oriented Software Construction, Prentice-Hall International :
Hemel Hempstead, United Kingdom, 1988, 534 pages.

[10] Grady Booch, Object-Oriented Design With Applications, Benjamin/Cummings,
Redwood
City, CA, 1991, 580 pages.

[11] Saly Shlaer and Stephen J. Mellor, Object Lifecycles, Modeling the World in States,
Y ourdon Press: Englewood Cliffs, NJ, 1992, 251 pages.

[12] James Rumbaugh, et a., Object-Oriented Modeling and Design, Prentice-Hall:
Englewood
Cliffs, NJ, 1991, 500 pages.

[13] Peter Coad and Edward Y ourdon, Object-Oriented Analysis, Second Edition, Y ourdon

31

Object-Oriented Analysis and Design Of Concurrent, Real-Time Systems May 31, 1998

Press: Englewood Cliffs, NJ, 1991, 233 pages.

[14] John Palmer, Object-oriented analysis and polymorphism: Gross concept neglect, Object
Magazine, March-April, 1993, pp. 34-36.

32

APPENDIX B. AUTOMATED GAS STATION
MANAGER RTSA SPECIFICATION

AUTOMATED GAS STATION MANAGER

RTSA DATA/CONTROL FLOW DIARGRAMS

B-1

COMMUNICA-
TIONS LEDS
LINK

CARD Incoming Messages
READER

A

Outgoing Messages|and
Link State Interrupts LED

On/Off Commands

Card Data,
Inserted Interrupts,
Read, Write, and

Eject Commands Switch

On/Off Interrupts

DETECTORS

SWITCH
¢ >
Sensor Data and Alarm
Commands On/Off Commands
Dispenser Commands, ALARM

Display
Data, and Meter Data

A 4

GAS
DISPENSER

B-2 AGMS CONTEXT DIAGRAM

message(Authorization)

LED On/Off
Commands

message(Credit Transaction)

Manage
Communicat
ions
Link
2

Card Data, Inserted
Interrupts, Read,
Write and Eject
Commands

Sﬁ'ptdo

Switch On/Off

Resf{;lrt';

Interrupts ;
Lin;i<
~~~~~Open Up
Dispenser Commands, :
Display Data, and Close
Meter Data
Manage
Sensor Data -.[ Gas Station
and Commands <« >

3

B-3 AGMS DECOMPOSITION INTO SUBSYSTEMS

Incoming Messages
Outgoing Messages and
Link State Interrupts



Switch On/O
Interrupts

Inserted Interrupt

Monitor
Card
Reader

Read Command

—

Card Data 13

LED On/Off
Commands

B-4

LED On/Off Command

/'

Reject
Transaction

Eject Command

i (ilose 1.7
Open . « : .
- K Message(Credit
) ’ Transaction)
Authorized ’
‘ T3 _
. Complete \ ——»Write Command and Data
R B Transaction
Not Autho_rized
R 4 v v 1.6
P ,&rb
Switch Off- .. o e
- A 4 Control
' Pump [
NI 4 ; 4. Establish
........ Switch On L 11 Transaction
' ’ 1.8
. A PO A
Cash C’:’ird Inserted ' 4 - » . R ~S~topped .
. i ) Display
o E1/D1 ) Data
CashT1 H . Dispense
K Okay . Cash Not .
Credit Card Inserted Okay Gas glc?r?ﬁ:;r?;s
' v 15
Authorize
Transaction
1.4

Transaction
Card
Information

LED On/Off  message(Authorization)

Command

1 MANAGE PUMP CONTROL/DATA FLOW DIAGRAM



. RCV LIST Not Authorized
Incoming

Message

4
__..-WwAuthorized

Decode
Message
Header
2.2

Rcv List
2.1

& Shutdown

A
Restart

LINK STATE INTERRUPT

|-
Ll

..y Link Down

message(Authorization)

N

new link status

Add Send
message(Alarm) to _ Wakewp to _
Tx List Link g
24 2.5

message(Credit

Transaction) TX LIST

B-5 2 MANAGE COMMUNICATIONS LINK DATA FLOW DIAGRAM

Outgoing Message



new link status

Save

Credit
Save . ...---cod )

.- Transactions
25.2
h 4
Outgoing Message Transmit
Message
251 Wakeup
Restorl‘e TX LIST CREDIT TRANSACTION

LIST

/

Restore
Credit
Transactions
2.5.3

B-6 2.5 Send to Link DATA FLOW DIAGRAM



T Link Down
Link up .

Restart

é hutdown

Control
Gas
. Station

3.1

E1/D1 PR

Sensor Data Threshold Exceeded

Monitor
and Commands

Detectors

3.2

B-7

Sound

Alarm Alarm On Command
< 3.3
' Reset
Tl Alarm
34
<V
Send
Alarm
""""""""" T3 Message
35
T4
Send
Opens | >
T5
" 3.6
Send
Closes | >
3.7 Closes

3 MANAGE GAS STATION CONTROL/DATA FLOW DIAGRAM



Appendix B. RTSA Specification Data Dictionary

AGMS DATA DICTIONARY

Alarm Commands

0isTURN OFF
1isTURN ON

Card Data: RECORD
-- Read from an inserted Card
1. identification number : ASCIlI STRING -- Determines second field
2. account number : ASCIl STRING -- If Credit Card
3. cash value: ASCII STRING -- If Cash Card
Card Information: RECORD

--Holds the dataread from a Card inserted into the Card Reader

1. identification number: NUMERIC

2. account number: NUMERIC -- Valid for Credit Card Only

3. cashvalue: INTEGER -- Valid for Cash Card Only
Card Read Commands

OisEject

lisRead (Input DataisaCard Data Record)
2isWrite (Output Datais a Card Data Record)

CREDIT TRANSACTION LIST: FILE
--A File containing saved Credit Transaction Messages

Dispenser Commands

0isSTOP GAS

1isSTART GAS

2isREAD METER (Input datais Meter Data)
3isWRITE DISPLAY (Output datais Display Data)

Display Dataa RECORD

B-9



Appendix B. RTSA Specification Data Dictionary

--Contains two values to be displayed

1. display galons: FIXED POINT (Gallons and Tenths and Hundreths)
2. display cost: FIXED POINT (Dollars and Cents)

Message: RECORD
--The Data Structure that holds a message

1. To: ADDRESS (Station or Remote Central Facility)
2. From: ADDRESS (Station or Remote Central Facility)
3. Type: BYTE
0isSHUTDOWN COMMAND
1isRESTART COMMAND
2 is Credit Transaction
3isAlarm
4 is Authorization request
5is Authorization reply
4. Optional additional parameters determined by Type.
For Credit Transaction:
Pump ID: INTEGER
account number: NUMERIC
cost of gas: INTEGER (in cents)
For Authorization Request
Pump ID: INTEGER
account number: NUMERIC
For Authorization Reply
Pump ID: INTEGER
response: BOOLEAN
0 isNot Authorized
lisAuthorized

Meter Datas REAL

-- Dataread from the Gas Dispenser’s meter

new link status: INTEGER

-- The new status of the communicationslink. Values can be 0, no change, 1, link up, or
-- -1, link down

B-10



Appendix B. RTSA Specification Data Dictionary

RCV LIST: LINKED_LIST
-- Thisis the queue of messages received on the Communications Link, but not yet
-- processed.
Sensor Commands
OisEnable
lisDisable
2 isRead (Input Datais Sensor Data)
Sensor Data: DEVICE DEPENDENT

-- Theraw input from a sensor device. The form is dependent on the specific sensor.

Transaction : RECORD
1. STATIONID : INTEGER
2. PUMPID : INTEGER
3. cost of gas: INTEGER
4. limit : INTEGER
TX LIST: LINKED_LIST

-- The queue of messages that are to be transmitted, but that have not yet been transmitted

B-11



Appendix B. RTSA Specification Data Dictionary

AGSM Mini-Specifications

1.2 Monitor Switch

LOOP FOREVER
WAIT for ACTIVATE INTERRUPT OR DEACTIVATE INTERRUPT
IFACTIVATE INTERRUPT
THEN Send Switch ON to Pump STD
ELSE Send Switch OFF to Pump STD
ENDIF
END FOREVER LOOP

1.3 Monitor Card Reader

LOOP FOREVER
WAIT for CARD INSERTED INTERRUPT
READ identification number and store in Card Information
IF identification number is Cash Card
THEN READ cash vaue,
store cash value in Card Information,
Send Cash Card Inserted Event to Pump STD
EL SEIF identification number is Corporate Credit Card
THEN READ account number,
store account number in Card Information,
Send Credit Card Inserted Event to Pump STD
ELSE CALL Reject Transaction
ENDIF
END LOOP

1.4 Authorize Transaction

IF Card Information.identification number is for a Cash Card
THEN
IF cash value is not positive
THEN Output LED ON COMMAND to Cash Vaue Used LED
Send Cash Not Okay Event to Pump STD
Wait 10 Seconds
Output EJECT COMMAND to Card Reader
Output LED OFF COMMAND to Cash Vaue Used LED
ELSE Create Transaction with STATION ID and PUMP ID
Set Transaction.limit to cash value
Send Cash Okay Event to Pump STD
ENDIF
ELSE Authorization Request := BUILD (Remote Central Facility Address, Station ID,
Pump ID, Card Information.account number)
CALL Add to Tx List(Authorization Request)
ENDIF

B-12



Appendix B. RTSA Specification Data Dictionary

1.5 Dispense Gas

Send START COMMAND to Gas Dispenser
LOOP FOREVER UNTIL Disabled from Pump STD
CALL Monitor Meter
CALL Update Display
If amount dispensed/100 * price per gallon
>= cash limit THEN BREAK LOOP
END FOREVER LOOP
Send STOP COMMAND to Gas Dispenser
CALL Monitor Meter
CALL Update Display
Set Transaction.cost of gas to amount dispensed/100 * price per gallon
Send Stopped to Pump STD
RETURN

Monitor Meter

READ meter value
Convert to hundreths of gallons
Set amount dispensed to converted value

Update Display

display gallons := amount dispensed/100
display cost := display gallons* price per gallon
Output display gallonsto GALLONS DISPLAY
Output display cost to COST DISPLAY

1.6 Complete Transaction

IF Card Information.identification number isfor Credit Card
THEN Credit Transaction := BUILD(Remote Central Facility Address, Station ID, Pump
ID, account number,
amount dispensed/100* price per gallon)
CALL Addto TX List (Credit Transaction)
ELSE new cash value := cash limit - (amount dispensed/100* price per gallon)
Output WRITE COMMAND with Card Information.identification number and
new cash value to Cash Card
ENDIF
Output EJECT COMMAND to Card Reader

1.7 Rgject Transaction

Output LED ON COMMAND to Cannot Process Card LED
Output EJECT COMMAND to Card Reader

Wait 10 Seconds

Output LED OFF COMMAND to Cannot Process Card LED

B-13



Appendix B. RTSA Specification Data Dictionary

1.8 Establish Transaction

Create Transaction with STATION ID and PUMP ID
Set Transaction.limit to zero

2.1 Addto Rev List

Accept message from Link
Add messageto RCV LIST
CALL Decode Message Header

2.2 Decode Message Header

IF messageisa RESTART COMMAND
THEN generate a Restart event for the Gas Station STD
EL SEIF messageisa SHUTDOWN COMMAND
THEN generate a Shutdown event for the Gas Station STD
EL SEIF message is an authorization reply
THEN IF message contains authorization
THEN generate an Authorized event for the appropriate
Pump STD
EL SE generate an Unauthorized event for the appropriate
Pump STD
ENDIF
ENDIF
Remove message from the RCV LIST

2.3 Analyze Link State

IF LINK STATE is UP and was DOWN

THEN CALL Transmit Message with new link state set to UP
ELSIF LINK STATE isDOWN and was UP

THEN CALL Transmit Message with new link state set to DOWN
ELSE CALL Transmit Message with new link state set to NO CHANGE

2.4 Add to Tx List(message)

Add messageto TX LIST
CALL Transmit Message(NO CHANGE)

2.5.1 Transmit Message(new link state)

IF new link state is UP
THEN CALL Restore Credit Transactions
remove any previously transmitted message, if any, from TX LIST
start transmission of next message, if any, from TX LIST
ELSIF new link state is DOWN
THEN CALL Save Credit Transactions
ELSIF new link stateis NO CHANGE
THEN remove any previously transmitted message, if any, from TX LIST
start transmission of next message, if any, from TX LIST

B-14



Appendix B. RTSA Specification Data Dictionary
ENDIF

2.5.2 Save Credit Transactions

FOR EVERY messageon TX LIST
IF message is a Credit Transaction
THEN Save message to CREDIT TRANSACTION LIST on Disk
ENDIF
Remove message from TX LIST
END FOR EVERY messageon TX LIST LOOP
2.5.3 Restore Credit Transactions

FOR EVERY message on CREDIT TRANSACTION LIST on Disk
Add message to head of TX LIST
Remove message from CREDIT TRANSACTION LIST on Disk
END FOR EVERY message on CREDIT TRANSACTION List on Disk LOOP

3.2 Monitor Sensors

LOOP FOREVER UNTIL Disabled from Gas Station STD
READ sensor data
convert the sensor data to processed sensor data (i.e., a REAL value)
compute deltafrom Threshold using processed sensor data and Threshold
IF previous delta was below Threshold and new deltais above Threshold

THEN Send Threshold Exceeded Event to Gas Station STD

ENDIF

END FOREVER LOOP

3.3 Sound Alarm
Send TURN ON COMMAND to Alarm

3.4 Reset Alarm
Send TURN OFF COMMAND to Alarm

3.5 Send Alarm Message

Alarm Message := BUILD(Remote Central Facility Address, Station I1D)
CALL Addto Tx List(Alarm Message)

3.6 Send Close

LOOP FOR EVERY Pump
Send Close to Pump
END LOOP

3.7 Send Open
LOOP FOR EVERY PUMP

B-15



Appendix B. RTSA Specification Data Dictionary

Send Open to Pump
END LOOP

B-16



T1 Authorize Transaction
T2 Complete Transaction
T3 Reject Transaction

T4 Establish Transaction
E1 Enable Dispense Gas
D1 Disable Dispense Gas

Waiting On
Done

Open
Close
v | v
Closed Opened
Y N N S —
giSh Not Not Credit Card
Cash Card &y Authorized Inserted
Inserted T3 TI
T1
Waiting
Authorization
Close Cash Okay
T3 [Switch is not On]
Authorized
[Switch is not On]
T4 v v
Authorized
Close
T3
Cash Okay
[Switch is On]
St d
| ooPPeT E1
T2 Switch On
Authorized
El [Switch is On]
Waiting On v v T4, E1
Stopped : _ Vv
Dispensing Stopped
4 T2
Close Switch Off
D1 D1

B-19 1.1 Control Pump STATE TRANSITION DIAGRAM




No Link Threshold Exceeded

T1, T3
A
Link Up
T4 Link Down
T5
v
_ Threshold
" _ Exceeded
g » Operating >
> T1, T3, T4
A y
Restart
T2, T4
Shutdown
Restart T5
T4
Y
Threshold Exceeded
Disabled

T1, T3

T1 Sound Alarm

T2 Reset Alarm

T3 Send Alarm Message
T4 Send Opens

T5 Send Closes

B-20 3.1 CONTROL GAS STATION STATE TRANSITION DIAGRAM



APPENDIX C. AUTOMATED GAS STATION
MANAGER COBRA SPECIFICATION



COMMUNICA-

GAS
STATION
SUBSYSTEM

TIONS
SUBSYSTEM

message ‘ i,

(Credit )
CARD Transaction) pNjot :
READER Aluthorized

Authorized
Card Data,

Inserted Interrupts,
Read, Write, and
Eject Commands

Pump

message
(Authorization)

_ On/Off Interrupts

LEDS

LED
On/Off Commands

Switch

Subsystem

Display

A 4

GAS
DISPENSER

SWITCH

Dispenser Commands,

Data, and Meter Data

C-4 PUMP SUBSYSTEM CONTEXT DIAGRAM



GAS

STATION

vl SUBSYSTEM

" vV COMMUNICA-
S . TIONS

LINK

, ‘Link Link :
Restart ‘Up  Down

Shutdown

Incoming Messages
Outgoing Messages and
Link State Interrupts
SUBSYSTEM
2
message ;
(Credit Not Authorized
Transaction) ; message
(Authorization)

Authgrized

‘~~A !:

PUMP
SUBSYSTEM

C-5 COMMUNICATIONS SUBSYSTEM CONTEXT DIAGRAM



DETECTORS

PUMP
SUBSYSTEM

v J

Close ! "-.IOpen

Alarm
On/Off

Commands > ALARM

GAS
STATION

SUBSYSTEM

¢

>

Sensor Data and <
Commands ,

Restart‘*.‘

© LNk Link
. Up: Down :
Shutdown: ' :

COMMUNICA
TIONS
SUBSYSTEM

C-6 GAS STATION SUBSYSTEM CONTEXT DIAGRAM



message(Authorization)

LED On/Off

Commands .
Incoming Messages

Outgoing Messages and
Link State Interrupts

message(Credit Transaction)

Communicat

Card Data, Inserted

ions
Interrupts, Read, Pump Subsystem
Write and Eject Subsystem H

Commands

Sﬁ'ptdo

Switch On/Off

Resf{;lrt';

Interrupts ;
Lin;i<
~~~~~Open Up
Dispenser Commands, - :
Display Data, and Close
Meter Data
Gas Station
Sensor Data -.[Subsystem
and Commands <« >

3

C-9 SUBSYSTEM LEVEL D/CFD

/ LED On/Off Command

Eject Command
Close

Open Eject Command

Authorized

LED number

Not- Authorized

Switch Off--.. - Transaction
Switch On/O A 4

Interrupts

Pump
Control

___________ Switch on' ™" N
- 11

Cash Card Ih-serted

.\‘

Stopped
s A Display
E1/D1 Data

Credit Card I‘nserte

Gas
Dispenser

Inserted Interrupt .
p Dispenser

Commands

Write(da > message(Authorization)

Card
Reader

Read Command 1.5

—>
Card Data

Message(Credit

1.3 Transaction)

Meter
Data

Eject Command

Write Command and Data Card
Information

C-9 PUMP SUBSYSTEM TOP-LEVEL DATA/CONTROL FLOW DIAGRAM

LED (number)

/'

Reject
Transaction

Eject
“Open Close < 115
o g Message(Credit
.. B Transaction)
Authorized '
T3 7
----- v Complete
-) . s Transaction
Not Authorized . " : ; write(data)
Switch Off--.. 7 \
A 4 Control
v Pump - Card
_ e ; Establish .
-------- Swieh Oy 111 Transaction Information
’ " ' 1.1.3
Cash Cfll’d Inserted) 4 ------ » .
cashT1 .
Okay . Cash Not

Credit C’ardllnserted ;
g |4 Transaction

Authorize
Transaction

Card
Information LED(number) message(Authorization)

C-10 1.1 Pump Control DATA/ICONTROL FLOW DIAGRAM

Appendix C. COBRA Specification Pump Subsystem Data Dictionary

PUMP SUBSYSTEM DATA DICTIONARY

Card Data: RECORD
-- Read from an inserted Card
1. identification number : ASCII STRING -- Determines second field
2. account number : ASCII STRING -- |f Credit Card
3. cash value: ASCII STRING -- If Cash Card
Card Information: RECORD
--Holds the dataread from a Card inserted into the Card Reader

1. identification number: NUMERIC

2. account number: NUMERIC -- Valid for Credit Card Only

3. cashvalue: INTEGER -- Valid for Cash Card Only
Card Reader Commands

OisEject

lisRead (Input DataisaCard Data Record)
2isWrite (Output Datais a Card Data Record)

Dispenser Commands

0isSTOP GAS

1isSTART GAS

2isREAD METER (Input datais Meter Data)
3isWRITE DISPLAY (Output datais Display Data)

Display Data: RECORD
--Contains two values to be displayed

1. display galons: FIXED POINT (Gallons and Tenths and Hundreths)
2. display cost: FIXED POINT (Dollars and Cents)

C-11

Appendix C. COBRA Specification Pump Subsystem Data Dictionary

LED(number) : INTEGER

OisCash Vaue Used
1is Cannot Process Card

Message: RECORD
--The Data Structure that holds a message

1. To: ADDRESS (Station or Remote Central Facility)
2. From: ADDRESS (Station or Remote Central Facility)
3. Type: BYTE
2 is Credit Transaction
4 is Authorization request
4. Optional additional parameters determined by Type.
For Credit Transaction:
Pump ID: INTEGER
account number: NUMERIC
cost of gas: INTEGER (in cents)
For Authorization Request
Pump ID: INTEGER
account number: NUMERIC

Meter Data: REAL

-- Dataread from the Gas Dispenser’s meter
Transaction : RECORD

1. STATION ID : INTEGER

2. PUMPID : INTEGER

3. cost of gas: INTEGER
4. limit : INTEGER

C-12

Appendix C. COBRA Specification Pump Subsystem Data Dictionary

Pump Subsystem Mini-Specifications

1.1.2 Authorize Transaction

IF Card Information.identification number is for a Cash Card
THEN
IF cash value is not positive
THEN CALL LED(Cash Vaue Used)
Send Cash Not Okay Event to Pump STD
Wait 10 Seconds
Cadll Card Reader.Eject
ELSE Create Transaction with STATION ID and PUMP ID
Set Transaction.limit to cash value
Send Cash Okay Event to Pump STD
ENDIF
ELSE Authorization Request := BUILD (Remote Central Facility Address, Station ID,
Pump ID, Card Information.account number)
CALL Add to Tx List(Authorization Request)
ENDIF

1.1.3 Establish Transaction

Create Transaction with STATION ID and PUMP ID
Set Transaction.limit to zero

1.1.4 Complete Transaction

IF Card Information.identification number isfor Credit Card
THEN Credit Transaction := BUILD(Remote Central Facility Address, Station ID, Pump
ID, account number,
amount dispensed/100* price per gallon)
CALL Addto TX List (Credit Transaction)
ELSE new cash value := cash limit - (amount dispensed/100* price per gallon)
CALL Card Reader.write(Card Information.identification number, new cash
value)
CALL Card Reader.Eject
ENDIF

1.1.5 Reject Transaction

CALL LED(Cannot Process Card)
CALL Card Reader.Eject

1.2 Switch
LOOP FOREVER
WAIT for ACTIVATE INTERRUPT OR DEACTIVATE INTERRUPT

C-13

Appendix C. COBRA Specification Pump Subsystem Data Dictionary

IFACTIVATE INTERRUPT
THEN Send Switch ON to Pump STD
ELSE Send Switch OFF to Pump STD
ENDIF
END FOREVER LOOP

1.3 Card Reader

LOOP FOREVER A
LOOP FOREVER B
WAIT for CARD INSERTED INTERRUPT
READ identification number and store in Card Information
IF identification number is Cash Card
THEN READ cash vaue,
store cash value in Card Information,
Send Cash Card Inserted Event to Pump STD
BREAK LOOPB
EL SEIF identification number is Corporate Credit Card
THEN READ account number,
store account number in Card Information,
Send Credit Card Inserted Event to Pump STD
BREAK LOOPB
ELSE OUTPUT EJECT COMMAND to Card Reader
ENDIF
END LOOP B
LOOP FOREVER C
WAIT for Card Reader Request
IF Request isEject THEN OUTPUT EJECT COMMAND to Card Reader
BREAK LOOPC
IF Request iswrite with data THEN OUTPUT WRITE COMMAND with
datato Card Reader
END LOOPC
END LOOP A

1.4LEDs

IF LED(number) is Cash Vaue Used
THEN OUTPUT LED ON COMMAND to LED #1
WAIT 10 Seconds
OUTPUT LED OFF COMMAND to LED #1
ELSIF LED(number) is Could Not Process Card
THEN OUTPUT LED ON COMMAND to LED #2
WAIT 10 Seconds
OUTPUT LED OFF COMMAND to LED #2
ENDIF

1.5 Gas Dispenser
Send START COMMAND to Gas Dispenser

C-14

Appendix C. COBRA Specification Pump Subsystem Data Dictionary

LOOP FOREVER UNTIL Disabled from Pump STD
CALL Monitor Meter
CALL Update Display
If amount dispensed/100 * price per gallon
>= cash limit THEN BREAK LOOP
END FOREVER LOOP
Send STOP COMMAND to Gas Dispenser
CALL Monitor Meter
CALL Update Display
Set Transaction.cost of gas to amount dispensed/100 * price per gallon
Send Stopped to Pump STD
RETURN

Monitor Meter

READ meter value
Convert to hundreths of gallons
Set amount dispensed to converted value

Update Display

display gallons := amount dispensed/100
display cost := display gallons* price per gallon
Output display gallonsto GALLONS DISPLAY
Output display cost to COST DISPLAY

C-15

RCV LIST Not Authorized

Outgoing Message

Incoming
Message v
__..-WwAuthorized
Decode
Message
Rcv List Header
2.1 2.2
& Shutdown
ey
Restart
LINK STATE INTERRUPT _.p Link Down
......... » LinkUp
message(Authorization) new link status
\ Add Send
message(Alarm) to _ Wwakewp to >
Tx List Link
2.4 2.5

/

message(Credit
Transaction) TX LIST

B-5 2 MANAGE COMMUNICATIONS LINK DATA FLOW DIAGRAM

new link status

Save
Credit
Transactions
2.5.2

Outgoing Message

Transmit
Message

TX LIST CREDIT TRANSACTION

Restore
Credit
Transactions
2.5.3

Ve

B-6 2.5 Send to Link DATA FLOW DIAGRAM

Appendix C. COBRA Specification Communications Subsystem Data
Dictionary

Communications Subsystem Data Dictionary

CREDIT TRANSACTION LIST: FILE

--A File containing saved Credit Transaction Messages
Message: RECORD

--The Data Structure that holds a message

1. To: ADDRESS (Station or Remote Central Facility)
2. From: ADDRESS (Station or Remote Central Facility)
3. Type: BYTE
0isSHUTDOWN COMMAND
1isRESTART COMMAND
2 is Credit Transaction
3isAlarm
4 is Authorization request
5is Authorization reply
4. Optional additional parameters determined by Type.
For Credit Transaction:
Pump ID: INTEGER
account number: NUMERIC
cost of gas: INTEGER (in cents)
For Authorization Request
Pump ID: INTEGER
account number: NUMERIC
For Authorization Reply
Pump ID: INTEGER
response: BOOLEAN
0isNot Authorized
1lis Authorized

new link status: INTEGER

-- The new status of the communications link. Values can be 0, no change, 1, link up, or
-- -1, link down

RCV LIST: LINKED_LIST

-- Thisis the queue of messages received on the Communications Link, but not yet
-- processed.

C-25

Appendix C. COBRA Specification Communications Subsystem Data
Dictionary

TX LIST: LINKED_LIST

-- The queue of messages that are to be transmitted, but that have not yet been transmitted

C-26

Appendix C. COBRA Specification Communications Subsystem Data
Dictionary

Communications Subsystem Mini-Specifications

2.1 Addto Rev List

Accept message from Link
Add messageto RCV LIST
CALL Decode Message Header

2.2 Decode Message Header

IF messageisa RESTART COMMAND
THEN generate a Restart event for the Gas Station STD
EL SEIF messageisa SHUTDOWN COMMAND
THEN generate a Shutdown event for the Gas Station STD
EL SEIF message is an authorization reply
THEN IF message contains authorization
THEN generate an Authorized event for the appropriate
Pump STD
EL SE generate an Unauthorized event for the appropriate
Pump STD
ENDIF
ENDIF
Remove message from the RCV LIST

2.3 Analyze Link State

IF LINK STATE is UP and was DOWN

THEN CALL Transmit Message with new link state set to UP
ELSIF LINK STATE isDOWN and was UP

THEN CALL Transmit Message with new link state set to DOWN
ELSE CALL Transmit Message with new link state set to NO CHANGE

2.4 Add to Tx List(message)

Add messageto TX LIST
CALL Transmit Message(NO CHANGE)

2.5.1 Transmit Message(new link state)

IF new link stateis UP
THEN CALL Restore Credit Transactions
remove any previously transmitted message, if any, from TX LIST
start transmission of next message, if any, from TX LIST
ELSIF new link state is DOWN
THEN CALL Save Credit Transactions
ELSIF new link state isNO CHANGE
THEN remove any previously transmitted message, if any, from TX LIST
start transmission of next message, if any, from TX LIST
ENDIF

C-27

Appendix C. COBRA Specification Communications Subsystem Data
Dictionary

2.5.2 Save Credit Transactions

FOR EVERY messageon TX LIST
IF message is a Credit Transaction
THEN Save message to CREDIT TRANSACTION LIST on Disk
ENDIF
Remove message from TX LIST
END FOR EVERY message on TX LIST LOOP

2.5.3 Restore Credit Transactions

FOR EVERY message on CREDIT TRANSACTION LIST on Disk
Add message to head of TX LIST
Remove message from CREDIT TRANSACTION LIST on Disk
END FOR EVERY message on CREDIT TRANSACTION List on Disk LOOP

C-28

. Lin~k~ Down
Link up .
"Restart 3
= E1/D1
ghutdoyvn
) 4 1[_.!2
R Control
4
Gas
Station
3.1
EZ/DZ 4 - o
Threshold E)'<'ceeded .
Segsgr Data d Detector "
and Commands Aray | . T3

3.2

Alarm On/Off Commands

Send
Alarm

T2

----------- T1----oomeeeeees Message
3.4
Send
Opens | >
3.5
Send
[
Closes | >
3.6 Closes

C-27 3 GAS STATION SUBSYSTEM TOP-LEVEL CONTROL/DATA FLOW DIAGRAM

Appendix C. COBRA Specification Gas Station Subsystem Data Dictionary

Gas Station Subsystem Data Dictionary

Alarm Commands

0isTURN OFF
1isTURN ON

Message: RECORD
--The Data Structure that holds a message
1. To: ADDRESS (Station or Remote Central Facility)
2. From: ADDRESS (Station or Remote Central Facility)
3. Type: BYTE
3isAlarm
4. Optional additional parameters determined by Type.
Sensor Commands
OisEnable
lisDisable
2 isRead (Input Datais Sensor Data)
Sensor Data: DEVICE DEPENDENT

-- Theraw input from a sensor device. The form is dependent on the specific sensor.

C-28

Appendix C. COBRA Specification Gas Station Subsystem Data Dictionary

Gas Station Subsystem Mini-Specifications

3.2 Detector Array

WHEN Enabled

LOOP UNTIL Disabled from Gas Station STD
READ sensor data
convert the sensor data to processed sensor data (i.e., a REAL value)
compute deltafrom Threshold using processed sensor data and Threshold
IF previous delta was below Threshold and new deltais above Threshold

THEN Send Threshold Exceeded Event to Gas Station STD

ENDIF

END LOOP

3.3 Alarm

WHEN Enabled
LOOP UNTIL Disabled from Gas Station STD
OUTPUT ON COMMAND to Alarm
END LOOP
OUTPUT OFF COMMAND to Alarm

3.4 Send Alarm Message

Alarm Message := BUILD(Remote Central Facility Address, Station ID)
CALL Addto Tx List(Alarm Message)

3.5 Send Close

LOOP FOR EVERY Pump
Send Close to Pump
END LOOP

3.6 Send Open

LOOP FOR EVERY PUMP
Send Open to Pump
END LOOP

C-29

T1 Authorize Transaction
T2 Complete Transaction
T3 Reject Transaction

T4 Establish Transaction
E1 Enable Gas Dispenser
D1 Disable Gas Dispenser

Waiting On
Done

Open
Close
¢ v
Closed Opened
Y N N S —
giSh Not Not Credit Card
Cash Card &y Authorized Inserted
Inserted T3 TI
T1
Waiting
» Authorization
Close Cash Okay
T3 [Switch is not On]
Authorized
[Switch is not On]
T4 v v
Authorized
Close
T3
Cash Okay
[Switch is On]
St d
| ooPPeT E1
T2 Switch On
Authorized
El [Switch is On]
Waiting On vy T4, E1
Stopped : .
Dispensing Stopped
4 T2
Close Switch Off
D1 D1

C-16 1.1 CONTROL PUMP STATE TRANSITION DIAGRAM

No Link Threshold Exceeded

El, D2, T1
A
Link Up _
T Link Down
T3
v
_ Threshold
" _ Exceeded
® » Operating > Emergency
> E1l, D2, T3, T1
A A
Restart
D1, E2, T2
Shutdown
Restart T3
T2
A
Threshold Exceeded
Disabled
El, D2, T1

T1 Send Alarm Message
T2 Send Opens

T3 Send Closes

E1 Enable Alarm

D1 Disable Alarm

C-30 3.1 Control Gas Station STATE TRANSITION
DIAGRAM

Appendix C. COBRA Specification Event Scenario Descriptions

AGMS Scenario Event Descriptions

What follows are narrative descriptions of each of the twenty-one scenarios depicted in the
following figures on pages C-32 through C-52. These scenarios were used to develop the state
transition diagrams for the Pump (C-53) and the Gas Station (C-54).

Scenario #1 - Exhausted Cash Card I nserted By The Customer (C-32)

The customer inserts a cash card into the card reader causing an Inserted Interrupt (S1-1). The
card reader reads the data from the cash card, stores that information (S1-2) and then generates a
Cash Card Inserted (S1-3) event for the Control Pump STD. Control Pump triggers (S1-4) a
function to authorize the cash transaction. Authorize Transaction examines the Card Information
(S1-5), sees that the cash card is exhausted, lights the Cash Value Used LED (S1-6), gects the
cash card (S1-7), and generates a Cash Not Okay (S1-8) event for the Control Pump STD.

Scenario #2 - Valid Cash Card I nserted By The Customer (C-33)

The customer inserts a cash card into the card reader causing an Inserted Interrupt (S2-1). The
card reader reads the data from the cash card, stores that information (S2-2) and then generates a
Cash Card Inserted (S2-3) event for the Control Pump STD. Control Pump triggers (S2-4) a
function to authorize the cash transaction. Authorize Transaction examines the Card Information
(S2-5), sees that the cash card is valid, creates a cash transaction (S2-6), generates a Cash Okay
(S2-7) event for the Control Pump STD. Then, if the pump switch is ON, the Control Pump
STD enables the Gas Dispenser (S2-8).

Scenario #3 - Corporate Credit Card I nserted By The Customer (C-34)

The customer inserts a corporate credit card into the card reader causing an Inserted Interrupt
(S3-1). The card reader reads the data from the credit card, stores that information (S3-2) and
then generates a Credit Card Inserted (S3-3) event for the Control Pump STD. Control Pump
triggers (S3-4) afunction to authorize the credit transaction. Authorize Transaction extracts the
account number from the Card Information (S3-5) and then sends an Authorization Request
message to the Remote Central Facility (S3-6).

Scenario #4 - Gas Dispenser Switch Set To On By Customer After The Transaction Has Been
Authorized (C-35)

The customer moves the pump switch to the ON position, generating a Switch On Interrupt
($4-1) at the Switch object. The Switch object then generates a Switch On event (S4-2) for the
Control Pump STD. If the customer’s transaction has already been authorized, then the Control
Pump STD enables the Gas Dispenser (4-3). The Gas Dispenser turns on the dispenser
mechanism ($4-4) and then cycles through its dispensing operations, reading the Meter Data
($4-5) and writing the Display Data ($4-6).

C-31-1

Appendix C. COBRA Specification Event Scenario Descriptions

Scenario #5 - Gas Dispenser Switch Set To On By Customer Before The Transaction Has
Been Authorized (C-36)

The customer moves the pump switch to the ON position, generating a Switch On Interrupt
(S5-1) at the Switch object. The Switch object then generates a Switch On event (S5-2) for the
Control Pump STD. Because the transaction has not yet been authorized, the Control Pump STD
simply remembers that the switch is ON.

Scenario #6 - Gas Dispenser Switch Set To Off By Customer (C-37)

The customer moves the pump switch to the OFF position, generating a Switch Off Interrupt
(S6-1) at the Switch object. The Switch object then generates a Switch Off event (S6-2) for the
Control Pump STD. If gaswas not being dispensed, the Control Pump STD simply remembers
that the switch is OFF. If gas was being dispensed, the Control Pump STD disables the Gas
Dispenser (S6-3). The Gas Dispenser then turns off the dispenser mechanism (S6-4), reads the
final value of the Meter Data (S6-5) and displays the final Display Data (S6-6).

Scenario #7 - Gas Dispenser Stops For Any Reason When A Cash Transaction Was

Being Processed (C-38)
The Gas Dispenser generates a Stopped event (S7-1) for the Control Pump STD. The Control
Pump STD then triggers a Complete Transaction operation (S7-2). The Complete Transaction
operation extracts the cash value from the Card Information (S7-3) and the cost of gas from the
Transaction (S7-4), determines the new cash value and writes it to the cash card (S7-5), and then
gjects the cash card (S7-6).

Scenario #8 - Gas Dispenser Stops For Any Reason When A Credit Transaction Was Being
Processed (C-39)

The Gas Dispenser generates a Stopped event (S8-1) for the Control Pump STD. The Control
Pump STD then triggers a Complete Transaction operation (S8-2). The Complete Transaction
operation extracts the account number from the Card Information (S8-3) and the cost of gas from
the Transaction (S8-4), sends a Credit Transaction message to the Remote Central Facility
(S8-5), and then gjects the credit card (S8-6).

Scenario #9 - Incoming Authorization Reply With Authorized, Gas Dispenser Switch I's Not
On (C-40)

An incoming message arrives on the communications link (S9-1) and is added to the receive list

(S9-2). The decode message function isinvoked (S9-3) to extract the message from the receive

list (S9-4) and to decode the message and generate an Authorized event (S9-5) for the

appropriate Control Pump STD. The Control Pump STD triggers (S9-6) a function to establish a

credit transaction (S9-7).

C-31-2

Appendix C. COBRA Specification Event Scenario Descriptions

Scenario #10 - Incoming Authorization Reply With Authorized, Gas Dispenser Switch I's

On (C-41)
An incoming message arrives on the communications link (S10-1) and is added to the receive list
(S10-2). The decode message function isinvoked (S10-3) to extract the message from the
receive list (S10-4) and to decode the message and generate an Authorized event (S10-5) for the
appropriate Control Pump STD. The Control Pump STD triggers (S10-6) afunction to establish
acredit transaction (S10-7). The Control Pump STD then enables (S10-8) the Gas Dispenser
which subsequently turns on the dispenser mechanism (S10-9) and cycles through the dispensing
operation, reading the Meter Data (S10-10) and writing the Display Data (S10-11).

Scenario #11 - Incoming Authorization Reply With Not Authorized (C-42)

An incoming message arrives on the communications link (S11-1) and is added to the receive list
(S11-2). The decode message function isinvoked (S11-3) to extract the message from the
receive list (S11-4) and to decode the message and generate a Not Authorized event (S11-5) for
the appropriate Control Pump STD. The Control Pump STD triggers (S11-6) afunction to reject
the transaction. The Reject Transaction function lights the Cannot Process Card LED (S11-7) and
gectsthe card (S11-8).

Scenario #12 - Incoming Restart When Station Was Previously Shutdown By Remote Central
Facility (C-43)

An incoming message arrives on the communications link (S12-1) and is added to the receive list

(S12-2). The decode message function isinvoked (S12-3) to extract the message from the

receive list (S12-4) and to decode the message and generate a Restart event (S12-5) for the Gas

Station STD. The Gas Station STD triggers (S12-6) a function to send Open events (S12-7) to

each Pump in the station.

Scenario #13 - Incoming Restart When Station Was Previously Shutdown By Emergency
(C-44)
An incoming message arrives on the communications link (S13-1) and is added to the receive list
(S13-2). The decode message function isinvoked (S13-3) to extract the message from the
receive list (S13-4) and to decode the message and generate a Restart event (S13-5) for the Gas
Station STD. The Gas Station STD disables (S13-7) the Alarm, enables (S13-9) the Detector
Array, and triggers (S13-10) afunction to send Open events (S13-11) to each Pump in the
station.

Scenario #14 - Incoming Shutdown From Remote Central Facility (C-45)

An incoming message arrives on the communications link (S14-1) and is added to the receive list
(S14-2). The decode message function isinvoked (S14-3) to extract the message from the
receive list (S14-4) and to decode the message and generate a Shutdown event (S14-5) for the
Gas Station STD. The Gas Station STD triggers (S14-6) afunction to send Close events (S14-7)
to each Pump in the station.

C-31-3

Appendix C. COBRA Specification Event Scenario Descriptions

Scenario #15 - Pump Receives A Close When The Pump Is | dle (C-46)

A Close event (S15-1) arrives at the Control Pump STD. Since the pump isidle, the Control
Pump STD simply moves into the closed state.

Scenario #16 - Pump Receives Close While Permission To Dispense Gas I s Pending (C-47)
A Close event (S16-1) arrives at the Control Pump STD. The Control Pump STD triggers

(S16-2) areject transaction operation which lights (S16-3) the Cannot Process Card LED and
gectsthe card (S16-4).

Scenario #17 - Pump Receives Close While Dispensing Gas (C-48)

A Close event (S17-1) arrives at the Control Pump STD. Since gas was being dispensed, the
Control Pump STD disables the Gas Dispenser (S17-2). The Gas Dispenser then turns off the
dispenser mechanism (S17-3), reads the final value of the Meter Data (S17-4) and displays the
final Display Data (S17-5).

Scenario #18 - Fire Detected When The Gas Station |s Not Operating (C-49)

The Detector Array generates a Threshold Exceeded event (S18-1) for the Gas Station STD. The
Gas Station enables (S18-2) the Alarm (which sendsan ALARM ON COMMAND to the Alarm
(S18-3)), disables (S18-4) the Detector Array, and triggers (S18-5) an operation which sends an
Alarm message (S18-6) to the Remote Central Facility.

Scenario #19 - Fire Detected When The Gas Station | s Operating (C-50)

The Detector Array generates a Threshold Exceeded event (S19-1) for the Gas Station STD. The
Gas Station enables (S19-2) the Alarm (which sendsan ALARM ON COMMAND to the Alarm
(S19-3)), disables (S19-4) the Detector Array, triggers (S19-5) an operation which sends Close
events (S19-6) to each of the pumps in the gas station, and triggers (S19-7) an operation which
sends an Alarm message (S19-8) to the Remote Central Facility.

Scenario #20 - Link State I nterrupt Brings The Communications Link Up (C-51)

A Link State Interrupt (S20-1) arrives at the Analyze Link State function which, under the proper
conditions, generates a Link Up event (S20-2) for the Gas Station STD. The Gas Station STD
triggers (S20-3) an operation which sends an Open event (S20-4) to each pump in the gas station.

Scenario #21 - Link State I nterrupt Brings The Communications Link Down (C-52)

A Link State Interrupt (S21-1) arrives at the Analyze Link State function which, under the proper
conditions, generates a Link Down event (S21-2) for the Gas Station STD. The Gas Station STD
triggers (S21-3) an operation which sends a Close event (S21-4) to each pump in the gas station.

C-31-4

-$1-3 Cash Card

Ins"‘eried
Control
P .
S1-2 e S1-7 Eject
.. A" SL4TRIGGER
S1-8 Cash.Not
4 Okay ..
cad 7 Authorize
Information Transaction

S1-5

S1-6 LED(number)

C-32 Scenario #1 - Exhausted Cash Card Inserted By The
Customer

---- -.52-3 Cash Card
S2-1 Inserted Reader

Inserted
Interr e
‘ Gas
" * Dispenser
Control S2-8 ENABL
S2-2 Pump
... A7 S24 TRIGGER This Object
A Enabled Only if the
S2-7 Cash Qlfay Switch is On
' e/)\ S26
Card Authorize .
. . Transaction
Information Transaction

S2-5

C-33 Scenario #2 - Valid Cash Card Inserted By The
Customer

Card

Reader -----...S3-3 Credit Card

S3-1 Inserte Inserted
Interru

.” "- .

Control
Pum

S3-2 b
" $3-4 TRIGGER
y
Card Authorize S3-6 message(Authorization)
Information Transaction

S3-5

C-34 Scenario #3 - Corporate Credit Card Inserted By The
Customer

©7784-2 Switch On

S4-1 Switc ‘
Interrup 1
Control
Pump

“54-3 Enable

S4-4 Dispenser On
Command

Dispenser

S4-6 Display Data

C-35 Scenario #4 - Gas Dispenser Switch Set To On By Customer After The
Transaction Has Been Authorized

..., S5-2 Switch On

S5-1 Switch'O
Interrupt .
. ':‘. T
Control
Pump

C-36 Scenario #5 - Gas Dispenser Switch Set To On By Customer Before The Transaction
Has Been Authorized

--... S6-2 Switch Off
S6-1 Switch Of
Interrupt

KN

Control
Pump

T " 56-3 Disable

/56-5 Meter Data

S6-4 Dispenser Off Command

P

Gas
Dispenser

\A S6-6 Display Data

C-37 Scenario #6 - Gas Dispenser Switch Set To Off By Customer

Gas

Dispenser | ""-~$_7-1 Stopped
RN
Control
Pump
"..57-2 TRIGGER
S7-3
Card
Information Complete S7-5 write(data)
Transaction
Transaction S7-6 Eject

C-38 Scenario #7 - Gas Dispenser Stops For Any Reason (i.e., Disabled or Reached Cash
Limit) When A Cash Transaction Was Being Processed

Gas e
Dispenser 88'1 Stopped
.” 'i .
Control
Pump
_____ "-$8-2 TRIGGER
Card S8-3
Information Complete S8-5.message(Credit Transaction)
Transaction
Transaction S8-6 Eject

C-39 Scenario #8 - Gas Dispenser Stops When A Credit Transaction Was Being
Processed

RCV LIST

Decode
Message
Header

Add to
Rcv List

S9-1 Incoming

Message _
Authorization R : S9-5 Authorized
eply) e
Control - Establish
Pump H Transaction

Transaction

C-40 Scenario #9 - Incoming Authorization Reply With Authorized - Gas Dispenser
Switch Is Not On

RCV LIST

Decode
Message

Rcv List

- Header
S11-1 Incoming S11-3
Message(
Authorization Reply 5 .
) S11-5 N_Q% Authorized

Control
Pump

Reject
Transaction

- 511-6 TRIGG

C-42 Scenario #11 - Incoming Authorization Reply With Not Authorized

RCV LIST

Decode
Message
Header

Add to

Rev List |
CV LIS S512\3

S12-5 Restart

A\ 4
Gas . [send | [" Control
Station Pump

S12-7 Open,

C-43 Scenario #12 - Incoming Restart When Station Was Previously Shutdown By
Remote Central Facility

RCV LIST

Decode

Add to

ot . Message S13-8 Alarm OFF
cv List
‘ S18-3 Header COM
S13-1 Incoming S13-7 DISABLE MAND
Message(R .

estart) S13-5 Restart

A Detector

Array
Gas 1.'313.9F
Station !
A Send | Control

Opens

$13-10 TRIGGER 1311 G, Pump

C-44 Scenario #13 - Incoming Restart When Station Was Previously Shutdown
By Emergency

RCV LIST

Decode
Message
-3 Header

Add to)
Rcv List

S14
S14-1 Inco
S14-5 Shutdown

Message(Shutdow v
n) g . ,
Gas "'. ______ sed | l." Control
Station : Closes - Pump

S14-7 Cld_

C-45 Scenario #14 - Incoming Shutdown From Remote Central Facility

Send ---..S15-1 Close
Close
e "-‘ T
Control
Pump

C-46 Scenario #15 - Pump Receives A Close When The Pump Is Idle

Send
Closes

S16-1 Closé

v S16-4 Eject

7

Control
Pump

Reject
Transaction

............

S16-3 LED(number)
- S16-2 TRIGG

C-47 Scenario #16 - Pump Receives Close While Permission to Dispense Gas Is
Pending

Detector S17-1 Close

Array

Control
Pump
~~‘~‘Sl7-2 Disable
. /517-4 Meter Data
a4

S17-3 Dispenser Off Command

Gas
Dispenser

\A S17-5 Display Data

C-48 Scenario #17 - Pump Receives Close While Dispensing Gas

Detector

Array

S18-4 DISABLE: -

... S18-1 Threshold

"Exgeeded
o« 4
"‘-“81_872--EN'ABLE S18-3 ALARM ON
Gqs COMMAND
Station

"._S18-5 TRIGGER

Send S18-6 message(Alarm)

Alarm
Message

C-49 Scenario #18 - Fire Detected When The Gas Station Is Not Operating

Detector . S19-1 Threshold
Array
*Exceeded
R R
. S19-2.ENABLE S19-3 ALARM ON
S19-4 DISABLE "*----... Gas ' COMMAND
Station ' i
_____ " 519-5 TRIGGER
Send
---------- >
Closes S19-6 Close

S19-7.TRIGGER
.

S19-8 message(Alarm)
Send

Alarm

(.
»

Message

C-50 Scenario #19 - Fire Detected When The Gas Station Is Operating

Analyze

Link ... S20-2 Link Up
S20-1 LINK S
INTERUP
_"-‘Y-".
Gas
. Station
_____ (;Send S
pens
S20-3 TRIGGER S20-4 Open
C-51 Scenario #20 Link State Interrupt Brings The
Communications Link Up
Analyze
Link ..., S21-2 Link Down
S21-1LINK S
INTERUP
Gas
Station
_____ Send
Closes >
S21-3 TRIGGER S21-4 Close

C-52 Scenario #21 Link State Interrupt Brings The
Communications Link Down

S12-7 or S13-11 Open

S15-1 Close
v v
Closed Opened
> <
— Xk & & A
S1-8 Cas%'\k‘g; S11-5 Not S3-3 Credit Card
S1.30rS2.3 Authorized Inserted
Cash Card Inserted
—— . IS11-6 Trigger S3-4 Trigger "Authorize
S1-4 Trigger "Au hprlze "Reject Transaction"
Transaftion Transaction"
v
Waiting
» Authorization
S16-1 Close IS2-7 Cash Okay

S16-2 Trigger "Reject Transaction"

S9-5 Authorized
_ [Switch is nat On]
S9-6 Trigger "Establish

[Switch is not On]

Waiting On
Done

Transaction"
A 4 A 4
Authorized
S16-1 Close
S16-2 Trigger "Reject Transaction"
S2-7 Cash Okay
[Switch is On]
S7-1 or S8-1 Stopped)
_— S2-8 Enable "Gas Dispenser"
IS7-2 or S8-2 Trigger "Complete)
Transaction” S4-2 Switch On
. S10-5 Authorized
S4-3 Enat_)le Gas_? [Switch is On]
. Dispenser
Wa|t|ng On vy S10-6 Trigger "Establish Transaction'
S10-8 Enable "Gas Dispenser"
Stopped _ . P
DISpenSIng S7-1 or S8-1 Stopped
A S7-2 or S8-2 Trigger "Complete
Transaction"
S17-1 Close S6-2 Switch Off
S17-2 Disable "Gas Dispenser" S6-3 Disable "Gas Dispenser"

C-53 CONTROL PUMP STATE TRANSITION DIAGRAM

S20-2 Link Up
S20-3 Trigger "Send Opens'

No Link

S18-1 Threshold Exceeded

S21-2 Link Down

S21-3 Trigger "Send Closes"

\ 4

S12-5 Restart

S12-6 Trigger "Send Opens"

\ 4

Operating

S18-2 Enable "Alarm"

S18-4 Disable "Detector Array

S18-5 Trigger "Send Alarm
Message"

S19-1Threshold
Exceeded

.
Lt

S19-2 Enable "Alarm"
S19-4 Disable "Detector Array

S19-5 Trigger "Send Closes"
S19-7 Trigger "Send Alarm

Message"

S13-5 Restart

S14-5 Shutdown

S13-7 Disable "Alarm"
S13-9 Enable "Detector Array"
S13-10 Trigger "Send Opens”

Disabled

S14-6 Trigger "Send Closes"

S18-1 Threshold Exceeded

S18-2 Enable "Alarm"

S18-4 Disable "Detector Array

S18-5 Trigger "Send Alarm
Message"

C-54 Gas Station STATE TRANSITION DIAGRAM

APPENDIX D. AUTOMATED GAS STATION
MANAGER OMT SPECIFICATION

AUTOMATED GAS STATION MANAGER

OBJECT MODEL

D-1

AGSM OBJECT MODEL

Remote
Central Customer
Facility Autherizes
f H
2:1 a
b S
l Card
Detector Communications identification
Link number
threshold status
——Uses—
status RCV LIST
processed TX LIST
sensor data CREDIT
TRANSACTION
LIST
Corporate Cash Card
Uses Credit Card
. cash value
Gas Station
account
number
Heat status
—8— :
Detector + < Station Id
00 3 £
P @ . c
P | g Transaction =
a P @ o
A N’
r <>) cost of gas D
Smoke ':) limit
Detector f S+
Alarm
Credit
Pump ;
Serves Transaction
status ©)
status
1D
Station Cash
<> <> <> Transaction
Serves T
Part-of
2
Gas
Dispenser
LED Switch Card Reader
amount
dispensed
price per status
gallon

D-2

Appendix D. OMT Specification Object Dictionary

Object Dictionary For Automated Gas Station Manager (AGSM)

Alarm

A audible device that is sounded at a Gas Station whenever afireis detected at the
station.

Attributes

1. status: BOOLEAN
Operations

1. sound -- Turnson aarm

2. reset -- Turnsoff darm

Card

A token, possessed by a Customer, that can be inserted into a Card Reader. Each Card
has an identification number to allow the Card Reader to distinguish various types of Cards.

Attributes
1. identification number: NUMERIC
Operations
1. set id number(id: NUMERIC)
2. get_id_number:NUMERIC
3. set_account_number(x:NUMERIC) -- default
4. get_account_number:NUMERIC -- default
5. set cash vaue(x:INTEGER) -- default
6. get_cash valueINTEGER -- default

Card Reader

An input/output device attached to each Pump that can detect the insertion of a
Corporate Credit Card or a Cash Card, that can distinguish between the two types of cards (as
well asidentify unrecognized cards), that can read appropriate information from each type of
card, that can debit and write a new balance to a Cash Card, and that can gject a card.

Operations
1. write(id_num: NUMERIC, value: INTEGER)
2. Eject
3. read

D-3

Appendix D. OMT Specification Object Dictionary

Cash Card inherits Card

A card encoded with a cash value which is debited by the dollar amount of gas pumped
after each transaction. The cash balance is printed on the card after each transaction. The card
contains an identification number which distinguishes it from a Corporate Credit Card and from
other types of cards that are not known to the system.

Attributes
1. cashvaue INTEGER

Operations
1. set _cash value(amount: INTEGER)
2. get_cash vaue INTEGER

Cash Transaction inherits Transaction

A transaction authorized by the cash value contained on a Cash Card. Gas may be
dispensed up to the amount of the cash value.

Operations
1. complete(card:CASH CARD) -- completes processing a Cash Transaction
2. authorize(card:CASH CARD) -- determines whether a Cash Card isvalid
3. reject -- lights appropriate LED and Ejects Card

Corporate Credit Card inherits Card

A card encoded with a corporate account number which must be verified before
dispensing gas. The card also contains an identification number which distinguishes it from a
Cash Card and from other types of cards that are not known to the system.

Attributes
1. account number: NUMERIC
Operations
1. get_account_number: NUMERIC
2. set_account_number(account: NUMERIC)

Credit Transaction inherits Transaction

A transaction requested with a Corporate Credit Card and authorized by the Remote
Central Facility. Once authorized, gas may be dispensed without limit.

Operations
1. complete(card:CREDIT CARD) -- completes processing a credit transaction

2. authorize(card:CREDIT CARD) -- determines whether a Credit Card isvalid

D-4

Appendix D. OMT Specification Object Dictionary

3. reject -- lights appropriate LED and Ejects Card

Communications Link

A link between the Gas Station and the Remote Central Facility. The link can go up and
down. When the link is up, Validation Requests and Validation Replies may be exchanged
between Pumps and the Remote Central Facility and Alarm Messages and Credit Transactions
may be sent from the Gas Station to the Remote Central Facility. The Gas Station can also
receive Shutdown Commands from the Remote Central Facility. When the link goes down, the
Gas Station shuts down, except that any pending Credit Transactions are saved on secondary
storage so that the processing can be completed when the link comes back up.

Attributes
1. status: INTEGER
2. RCV_LIST: LINKED_LIST
3. TX_LIST: LINKED_LIST
4. CREDIT_TRANSACTION_LIST: FILE
Operations
1. analyze link(event: LINK_EVENT) -- encapsulatesLink STD
2. add to_rcv_list(message: ARRAY[BYTES]) -- enqueues areceived message
3. add to tx_list(message: RECORD) -- enqueues a message for transmission
4. decode _message header -- generatesincoming events for other STDs
5. transmit_message -- sends amessage if possible
6. handle_message sent_interrupt
7. handle_message received interrupt
8. handle link_state interrupt
9. save credit_transactions -- moves credit transactions from TX_LIST to

-- CREDIT_TRANSACTION_LIST. Other messages are
-- discarded

10. restore credit_transactions -- moves credit transactions from
-- CREDIT_TRANSACTION_LIST to head of TX_LIST

Customer

A human being who initiates a gas purchase transaction by inserting a Cash Card or a
Corporate Credit Card and who turns the Pump on and off and who dispenses the gas.

Detector

D-5

Appendix D. OMT Specification Object Dictionary

A device that monitors some physical condition and signals when the monitored

condition surpasses a specified threshold.

Lo

Attributes
threshold: REAL

2. status: INTEGER

processed_sensor_data: REAL

Operations

read { abstract} -- must read the sensor, convert the data to processed form and storeit in
-- processed_sensor_data

monitor_sensor:REAL --computes a delta between threshold and processed sensor data

3. send_threshold_exceeded -- generates a Threshold Exceeded event for the Gas Station

4.

process change(deltaREAL) --encapsulates the Detector STD

Gas Dispenser

The mechanism within each Pump that dispenses gasoline, measures the amount

dispensed, and terminates dispensing when conditions require.

Attributes
1. amount dispensed: REAL
2. price per galon: INTEGER is CONSTANT
Operations
1. start_gas -- starts the gas dispenser to dispense up to the
-- maximum, but a zero maximum means no limit
2. stop gas -- stops the gas dispenser
3. clear_amount_dispensed
4. update_amount_dispensed
5. update_display
6. get_amount_dispensed: REAL
7. get_price: INTEGER
8. imit_reached(t: TRANSACTION): BOOLEAN -- T if the limit is reached, F otherwise
Gas Station

A physical location comprising Pumps, an Alarm, a Dedicated Communications Link,

and some local, secondary storage. The Gas Station can monitor and control its Pumps, control
its Alarm, and monitor its Dedicated Communications Link.

D-6

Appendix D. OMT Specification Object Dictionary

Attributes
1. status: INTEGER
2. Pump_lds: LINKED_LIST
3. Station_Id: INTEGER

Operations
. process_event(event: GS EVENT)

1
2. open_pumps -- send an Open Event to each Pump STD
3. close_pumps -- send a Close Event to each Pump STD

4. send_alarm_message -- forward alarm message to the Remote Central Facility

Heat Detector inherits Detector

A device attached to each Pump. The device monitors heat levels and signals the Gas
Station when heat surpasses a specified threshold.

Operations
1. read -- inputs sensor data, convertsto REAL, and stores as processed sensor data
LED

A light-emitting diode. Two are attached to each Pump: oneis placed under alabel
"Cannot Process Card" and the other is placed under alabel "Card Value Used". Thefirstis
lighted when a Customer inserts a card that is not avalid Corporate Credit Card or a Cash
Card. The second is lighted when the value on an inserted Cash Card reaches zero. Any LED
that islit will be turned off when another card is inserted into the Pump or after atime-out.

Operations
1. light --turnsitself onand, after atimeout, turnsitself off.
Pump

A gasoline dispensing device located at a Gas Station. Each Pump can dispense one
grade of gasoline. Each Pump comprises a Heat Detector, a Smoke Detector, two LEDs, a Card
Reader, a" Gas Purchased" Display, a" Gas Cost" Display, an on/off switch, and anozzle.

Attributes
1. status: INTEGER
2. ID: INTEGER -- identity of the Pump
3. Station: INTEGER -- identity of the station where the pump is located

Operations

D-7

Appendix D. OMT Specification Object Dictionary

1. process event(event: PUMP_EVENT) -- encapsulatesthe Pump STD

Remote Central Facility

A control point for a Gas Station. The Remote Central Facility communicates with a
Gas Station across a Communications Link. The Remote Central Facility accepts Credit
Transactions from Pumps, Validation Requests, and Alarm Messages. The Remote Central
Facility issues Shutdown Commands, and Validation Replies.

Smoke Detector inherits Detector

A device attached to each Pump. The device monitors concentration of smoke particles
and signals the Gas Station when the concentration of smoke particles surpasses a specified
threshold.

Operations
1. read -- inputs sensor data, convertsto REAL, and stores as processed sensor data
Switch

The on/off actuator at each Pump. The Customer must turn the Switch on before
dispensing gasoline and must turn the Switch off when finished dispensing gasoline.

Attributes
1. status: INTEGER

Operations
1. handle_switch_interrupt -- Switch interrupt processing
2. process_event(event: SWITCH_EVENT) -- encapsulates Switch STD
3. send_switch_on -- generate switch on event for Pump
4

. send_switch_off -- generate switch off event for Pump

Transaction

A Transaction isthefilling of a Customer’s request for gasoline. Each Transaction
resultsin a Customer being charged for the cost of gas purchased.

Attributes
1. cost of gas: INTEGER
2. limit: INTEGER
Operations
1. get_limit: INTEGER -- returns the value of the limit attribute
2. set_cost_of_gas(amount: INTEGER) -- changes the value of the cost of gas attribute
3. complete(card:CARD) { abstract} -- complete the transaction

D-8

Appendix D. OMT Specification Object Dictionary

4. authorize(card:CARD) {abstract} -- decide whether the transaction is authorized

5. reject { abstract} -- terminate an unauthorized transaction

D-9

AUTOMATED GAS STATION MANAGER

DYNAMIC MODEL

D-10

OPEN from Gas Station

CLOSE from Gas Station

v

|

transaction
NG J

A

do: Dispense Gas

CLOSE from Gas Station

- J

4 N
Closed Opened
o
A A A A
CASH CARD
INSERTED / CREDIT CARD INSERTED /
Create Cash Create (Credit Transaction
Transaction NOT|AUTHORIZED/
reject transaction
A
Waiting)
Authorization
» entry: authorize
transaction
CLOSE from
Gas Station / . J
Eject Card
AUTHORRIZED [Switch is not On]
A
uthorized R
CLOSE from Gas Station /
Eject Card L)
Stopped from Gas Dispenser
(Wait On Stopped) i
pp ON from Switch
entry / Send Stop AUTHORIZED [Switch is On]
1 Dispensing to
Gas Dispenser P v L
exit / complete Dispensing Stopped from Gas

Dispenser /
Light "Card Value Used" LED
Complete Transaction

OFF from Switch

Stopped from Gas
Dispense

(Wait On Done)
entry / Send Stop
Dispensing to
Gas Dispenser
exit / complete

transaction
\\7 A

J

D-11 PUMP STATE TRANSITION DIAGRAM

[Switch Off)
entry / Set Switch.status
to Off,
Send Pump
SWITCH OFF
- /

SWITCH ACTIVATED

SWITCH DEACTIVATED

[Switch On)
entry / Set Switch.status |
to On,
Send Pump
SWITCH ON
- /

D-12 SWITCH STATE TRANSITION DIAGRAM

LINK UP from
Communications Link

No Link W

THRESHOLD
EXCEEDED from Detector

J

LINK DOWN from
Communications Link

A

Operating

RESTART from Remote
Central Facility

>entry / Send OPEN to

Pumps

exit / Send CLOSE to
Pumps

™~ 4

THRESHOLD Emergency
EXCEEDED |entry / Send ALARM
from Detector MESSAGE to
Remote Central
Facility

exit / Reset Alarm
J -

RESTART from Remote

4

SHUTDOWN from

Central Facility

Remote Central Facility

Disabled

W THRESHOLD
EXCEEDED from Detector

D-13 GAS STATION STATE TRANSITION DIAGRAM

Below Threshold)

do: monitor sensor

exit / Sound Alarm,
Send THRESHOLD
EXCEEDED to
Gas Station
N J
THRESHOLD CROSSED
COMING DOWN

\ 4

THRESHOLD CROSSED
GOING UP

> monitor sensor

E Above Threshold W
(0] <

D-14 DETECTOR STATE TRANSITION DIAGRAM

AUTOMATED GAS STATION MANAGER

FUNCTIONAL MODEL

D-16

new cash value

identification number,
account number

Credit Transaction

" Authorization

Authorization™ .. _
Request)

account number,
ash limit

identification number,
cash value

Perform
Transaction
1.3

Authorize
------------------------------- Transaction
1.2

d
-

identifcation number,
new cash value

LED number

cash value
CARD INSERTED

INTERRUPT

LED number LED number
EJECT, WRITE, & |
READ COMMANDS
from Pump
STD

TURN ON &
TURN OFF COMMANDS

D-19 1 Process Customer DATA FLOW DIAGRAM

LED number

/—> account number
_,y cash value

identification number

CARD INSERTED

identification number,
account number
cash value

Card Information

READ COMMAND identification number

identification number,
new cash value /

WRITE COMMAND
EJECT COMMAND

new cash value

D-20 1.1 Manage Card Reader DATA FLOW DIAGRAM

uthorization Reply

Authorization Request

account number,
cash limit

account number)
»” Authorize

Credit
Transaction

121

EJECT ,
---------- Authorize
----------------------------- Cash
Close Transaction
1.2.2

account number,

cash value
cash limit

D-21 1.2 Authorize Transaction DATA FLOW
DIAGRAM

Switch OFF

Pump STD
to Pu pS< ______

STOP

COMMAND Eject new cash value
A

START
COMMAND

/

Stop from Pump STD

Complete
Transaction
1.35

cash limit Dispense
Gas

1.3.1

\ 4

Credit Transaction

LED number .
s
Stopped to Pump STD

Switch ON to Pump STD amount dispensed price per gallon
A

Monitor
Meter
1.3.3

Update
Display

134

ACTIVATE & READ meter value display data
DEACTIVATE COMMAND
INTERRUPTS

D-22 1.3 Perform Transaction DATA FLOW DIAGRAM

Threshold
Read Monitor
sensor data [Sensor processed sensor data [Sensor el o Throchold
21 to Detector STD
2.1 29

v

Reset
Alarm |lg---coooeeoe-
Sound 53
Alarm 1\
2.4 from Dectotor STD
TURN OFF
TURN ON COMMAND
COMMAND

D-23 2 MANAGE ALARM DATA FLOW DIAGRAM

Send
Alarm
Message
3.1

Threshold Exceeded

» Alarm

Close
Shutdown
Link Down
Send Send
------------------- RESBE e Open }----------p Open
Restart 3.3 v 34
\ Link Up

Reset
Alarm

D-24 3 MANAGE GAS STATION DATA FLOW DIAGRAM

RCV LIST

message

Add
to
Rcv List
4.1

MESSAGE RECEIVED
INTERRUPT

LINK UP INTERRUPT

v

.
>

LINK DOWN INTERRUPT

Add
to
Tx List
4.4

message

Link Down

new link status

TX LIST

Not Authorized

__..-wAuthorized

& Shutdown

.\~A

Restart

from Link STD

credit transaction

.
»

authorization
request

alarm message

MESSAGE SENT
INTERRUPT

D-25 4 MANAGE COMMUNICATIONS LINK DATA FLOW DIAGRAM

new link status

LINK STATUS

Save
Credit
Transactions
45.2

credit transaction

from Link STD

MESSAGE SENT

, INTERRUPT
alarm message Transmit
Message
authorization
request
from Link STD
TX LIST CREDIT TRANSACTION
LIST
Restore
Credit
from Link STD -+ -+ oo -.. > Transactions

4.5.3

D-26 4.5 Send to Link DATA FLOW DIAGRAM

Appendix D. OMT Specification Function Descriptions

AGSM Function Descriptions

1.1.1 Read Card I nput

LOOP FOREVER
WAIT for CARD INSERTED INTERRUPT
READ identification number and store in Card Information
IF identification number is Cash Card
THEN READ cash vaue,
store cash value in Card Information,
CALL Authorize Cash Transaction(cash value)
EL SEIF identification number is Corporate Credit Card
THEN READ account number,
store account number in Card Information,
CALL Authorize Credit Transaction(account number)
ELSE CALL Light LED(Cannot Process Card)
CALL Eject Card
ENDIF
END LOOP

1.1.2 Write Card Output(new cash value)

WRITE(identification number from Card Information, new cash value)
to CARD

1.1.3 Eject Card
EJECT

1.2.1 Authorize Credit Transaction(account number)

Authorization Request := BUILD (Remote Central Facility Address, Station ID, Pump ID,
account number)

CALL Add to Tx List(Authorization Request)
WAIT for Authorization Reply OR Close
IF Authorization Reply with Authorization

THEN CALL Dispense Gas(account number,(cash limit := none))
EL SEIF Authorization Reply without Authorization

THEN CALL Light LED(Cannot Process Card)

CALL Eject Card

ELSE CALL Eject Card
ENDIF

D-27

Appendix D. OMT Specification Function Descriptions

1.2.2 Authorize Cash Transaction(cash value)

IF cash value is not positive
THEN CALL Light LED(Cash Vaue Used)
CALL Eject Card
ELSE CALL Dispense Gas((account number := not valid), (cash limit := cash value))
ENDIF

1.3.1 Dispense Gas(cash limit)

Send START COMMAND to Gas Dispenser
LOOP FOREVER
Check for Stop from Pump STD
If Stop received THEN BREAK LOOP
CALL Monitor Meter
CALL Update Display
If amount dispensed/100 * price per gallon
>= cash limit THEN BREAK LOOP
END FOREVER LOOP
Send STOP COMMAND to Gas Dispenser
CALL Monitor Meter
CALL Update Display
RETURN

1.3.2 Monitor Switch

LOOP FOREVER
WAIT for ACTIVATE INTERRUPT OR DEACTIVATE INTERRUPT
IF ACTIVATE INTERRUPT
THEN Send Switch ON to Pump STD
ELSE Send Switch OFF to Pump STD
ENDIF
END FOREVER LOOP

1.3.3 Monitor Meter

READ meter value
Convert to hundreths of gallons
Set amount dispensed to converted value

1.3.4 Update Display

display gallons := amount dispensed/100

display cost := display gallons* price per gallon
OUTPUT display gallonsto GALLONS DISPLAY
OUTPUT display cost to COST DISPLAY

D-28

Appendix D. OMT Specification Function Descriptions

1.3.5 Complete Transaction(account number, cash limit)

IF account number is valid
THEN Credit Transaction := BUILD(Remote Central Facility Address, Station ID, Pump
ID, account number,
amount dispensed/100*price per gallon)
CALL Add to TX List (Credit Transaction)
ELSE new cash value := cash limit - (amount dispensed/100*price per gallon)
CALL Write Card Output(new cash value)
ENDIF
CALL Eject Card

1.4 Light LED(LED number)

IF LED number is Cash Value Used
THEN TURN ON Cash Value Used LED
ELSE TURN ON Cannot Process Card LED
ENDIF
WAIT 15 Seconds
TURN OFF BOTH LEDs

2.1 Read Sensor Data

READ sensor data
convert the sensor data to processed sensor data (i.e., a REAL value)
CALL Monitor Sensor(processed sensor data)

2.2 Monitor Sensor(processed sensor data)

compute delta from Threshold using processed sensor data and Threshold
pass delta from Threshold to Detector STD

2.3 Reset Alarm
Send TURN OFF COMMAND to Alarm

2.4 Sound Alarm
Send TURN ON COMMAND to Alarm

3.1 Send Alarm Message

Alarm Message := BUILD(Remote Central Facility Address, Station ID)
CALL Add to Tx List(Alarm Message)

3.2 Send Close
LOOP FOR EVERY Pump

D-29

Appendix D. OMT Specification Function Descriptions

Send Close to Pump
END LOOP

3.3 Send Reset
CALL Reset Alarm
3.4 Send Open

LOOP FOR EVERY PUMP
Send Open to Pump
END LOOP

4.1 Add to Rev List

Accept message from Link
Add messageto RCV LIST
CALL Decode Message Header

4.2 Decode Message Header

IF message isaRESTART COMMAND
THEN generate a Restart event for the Gas Station STD
EL SEIF messageisa SHUTDOWN COMMAND
THEN generate a Shutdown event for the Gas Station STD
EL SEIF message is an authorization reply
THEN IF message contains authorization
THEN generate an Authorized event for the appropriate
Pump STD
EL SE generate an Unauthorized event for the appropriate
Pump STD
ENDIF
ENDIF
Remove message from the RCV LIST

4.3 Analyze Link State

This function operates following the rulesin the Link STD
set new link status asindicated in Link STD
generate appropriate events asindicated in Link STD

4.4 Add to Tx List(message)

Add messageto TX LIST
CALL Transmit Message

4.5.1 Transmit Message

CALL ENTRY Transmit Message:
IFLINK STATUSisUP and no message is being transmitted
THEN start transmission of next message from TX LIST

D-30

Appendix D. OMT Specification Function Descriptions

ELSEIF LINK STATUSisDOWN
THEN CALL Save Credit Transactions
ENDIF
RETURN

MESSAGE SENT INTERRUPT ENTRY :
IF TX LIST isempty
THEN RETURN
ELSE CALL Transmit Message
ENDIF
RETURN

4.5.2 Save Credit Transactions

FOR EVERY messageon TX LIST
IF message is a Credit Transaction
THEN Save message to CREDIT TRANSACTION LIST on Disk
ENDIF
Remove message from TX LIST
END FOR EVERY messageon TX LIST LOOP

4.5.3 Restore Credit Transactions

FOR EVERY message on CREDIT TRANSACTION LIST on Disk
Add message to head of TX LIST
Remove message from CREDIT TRANSACTION LIST on Disk
END FOR EVERY message on CREDIT TRANSACTION List on Disk LOOP

D-31

Appendix D. OMT Specification Data Dictionary

AGMS DATA DICTIONARY FOR FUNCTIONAL MODEL

A. account number: NUMERIC
-- Number issued on Corporate Credit Cards to identify the account
B. amount dispensed: REAL
--Contains the amount of gasoline dispensed at a Pump in units of hundreths of agallon
C. Card Information: RECORD
--Holds the data read from a Card inserted into the Card Reader
1. identification number: NUMERIC
2. account number: NUMERIC
3. cashvaue INTEGER

D. cashlimit: INTEGER

--Contains the limit in cents that a Customer can use to buy gas
--If the value is negative, then the Customer has no limit

E. cashvaue: INTEGER
--Indicates the value of a Cash Card in cents.

F. CREDIT TRANSACTION LIST: FILE
--A File containing saved Credit Transaction Messages

G. deltafrom Threshold: REAL
--Contains a measure of the distance of a given sensor reading from the
--Threshold. (If positve, then the distance is above the Threshold. If negative,
-- then the distance is below the Threshold.)

H. display data: RECORD

--Contains two values to be displayed

1. display gallons: FIXED POINT (Gallons and Tenths and Hundreths)
2. display cost: FIXED POINT (Dollars and Cents)

D-32

Appendix D. OMT Specification Data Dictionary

[. identification number: NUMERIC
--Distinguishes a Cash Card from a Corporate Credit Card
J. LED number: INTEGER

--ldentifies the LED on a Pump that isto be turned on.
-- Vaues: 0OisCash Vaue Used
-- 1 is Cannot Process Card

K. LINK STATUS: INTEGER

--Indicates the current state of the Communications Link
-- Vaues: 0x00isLink Up
-- 0x01isLink Down

L. messages: RECORD
--The Data Structure that holds a message

1. To: ADDRESS (Station or Remote Central Facility)
2. From: ADDRESS (Station or Remote Central Facility)
3. Type: BYTE
0isSHUTDOWN COMMAND
1isRESTART COMMAND
2 iscredit transaction
3isalarm message
4 is authorization request
5 isauthorization reply
4. Optional additional parameters determined by Type.
For credit transaction:
Pump ID: INTEGER
account number: NUMERIC
cost of gas: INTEGER (in cents)
For authorization request
Pump ID: INTEGER
account number: NUMERIC
For authorization reply
Pump ID: INTEGER
response: BOOLEAN
0isNot Authorized
1lisAuthorized

D-33

Appendix D. OMT Specification Data Dictionary

M. meter value: REAL

-- Dataread from the Gas Dispenser’s meter
N. new cash value: INTEGER

-- The value (in cents) to place back onto the Cash Card after the transaction is complete
O. new link status: INTEGER

-- The new status of the communicationslink. Values can be O, link up, or 1, link down
P. price per gallon: INTEGER

-- The cost of gasoline, per gallon, at the Pump. The units are cents. Thisvalueisa
-- configuration setting for each Pump.

Q. processed sensor data: REAL
-- The current value read from a sensor, but converted to areal number.
-- For a smoke detector, this measures smoke particle concentration in parts per million.
-- For aheat detector, this measrues temperature in degrees Celsius.

R. RCV LIST: LINKED_LIST

-- Thisis the gqueue of messages received on the Communications Link, but not yet
-- processed.

S. sensor data: DEVICE DEPENDENT
-- Theraw input from a sensor device. The form is dependent on the specific sensor.
T. Threshold: REAL

-- The value that a processed sensor data input is compared against.
-- Thisisset as a configuration option on each sensor.

U. TX LIST: LINKED_LIST

-- The queue of messages that are to be transmitted, but that have not yet been transmitted

D-34

AUTOMATED GAS STATION MANAGER

OBJECT COMMUNICATION DIAGRAMS,
OBJECT FUNCTION DIAGRAMS,
AND

OBJECT FUNCTION DESCRIPTIONS

D-35

CREDIT
CARD

CORPORATE

identjcation

COMMUNICA-
TIONS
LINK

LINK UP INTERRUPT,
LINK DOWN INTERRUPT,

LEDS

COMMANDS

LEDYON & LED OFF

numbe MESSAGE SENT INTERRUPT,
account Number MESSAGE REGEIVED
INTERRUPT
CASH
CARD
SWITCH
cash value ACTIVAT
identificatio DEACHVATED
nu er ERRUPTS
new ca
value AGMS credit transaction,
sensor data alarm message,
DETECTORS R authorization requests
> 0 > REMOTE
M CENTRAL
ﬁ:\IAéRED RESTART COM g, FACILITY
RR authorization replies
E T,
WRITE, &
CARD READ ggF;T& ALARM ON & ALARM OFF
COMMANDS OMMANDS
READER READ GOMMANDS,
meter, display fata
valu Y
ALARM
GAS
DISPENSER

D-36 AGMS CONTEXT DIAGRAM

Authorization Request Message

&

Credit Transaction Message

Not Authorized

LINK INTERRUPTS,
SHUTDOWN &

RESTART

COMMUNICATIONS

LINK

replies

Authorized

L0
. Yoy R

No Credit Cash Out
LED LED
CARD
READER COMMAND
7 ification
number,
A cash value,
account number Pump
EJECT & Subsystem
WRITE %
COMMANDS, 1
identification
number,
new cash value
ACTIVATED &
DEACTIVATED
GAS
PUMP
SWITCH
GAS
DISPENSER

DISPENSER
DISPLAY

* One Instance of Pump

Subsystem per pump

SMOKE

estarts

Shutdowns &

DETECTORS

sensor data

sen

HEAT
DETECTORS

AGMS SUBSYSTEM DECOMPOSITON

data

Subsystem
3

Gas Station
Subsystem

2

alarm messages,

credit transactions,

authorization requests

Alarm Message

ALARM ON &

ALARM

ALARM OFF
COMMANDS

ALARM ON
&

ALARM OFF
COMMANDS

Gas Station
Aggregate

sensor data

Ntx_list(Alarm Message)

LINK UP INTERRUPT,

SHUTDOWN LINK DOWN INTERRUPT,
MESSAGE SENT INTERRUPT,
MESSAGE RECEIVED INTERRUPT
OPEN LINK DOWN

LINK UP
RESTART

AUTHORIZED

/ NOT AUTHORIZED

Communications
Link

ACTIVATED &

DEACTIVATED

INTERRUPTS) -
identificati b Pump add_to_tx_list(Authorization Request)
identification number,
cash value Aggregate

add_to_tx_list(Credit Transaction)

identification number,—p
LED ON

account number o
&

CARD INSERTED
INTERRUPT LED OFE
identification COMMANDS

meter value number, EJECT,
new cash WRITE, & START,
value READ STOP, &
COMMANDS READ COMMANDS,
display data

D-37 TOP-LEVEL OBJECT COMMUNICATIONS DIAGRAM

Smoke

sensor data i ALARM ON
Detector add_to_tx_list(AlarmMessage) 2
THRESHOLD EXCEEDED reset ///// é@ﬁﬁ&ﬁﬁ@

sound

‘////

N

THRESHOLD EXCEEDED

RESTART—

SHUTDOWN

LINK DOWN

OPEN
sensor data Heat
Detector
LINK UP
CLOSE \\\\\\\

D-38 GAS STATION AGGREGATE OBJECT COMMUNICATIONS DIAGRAM

CREDIT CARD INSERTED

add_to_tx_list(Authorization

ACTIVATED &
Request)
add_to_tx_list(CreditTransacton) DEACTIVATED
INTERRUPTS
Credit Card get_account_number Credn_ \
Transaction
authorize
N
complete
¢ limit ON
light(LED ge _|r\n| reject
number) set_cost_of_gas(amount)
Eject
set_account_number(account)
set_id(id)
/
NOT AUTHORIZED
identification number, LED ON

light(LED number)

cash value P & AUTHORIZEF
LED OFF
CARD INSERTED Card COMMANDS <«OPEN-
Reader

INTERRUPT Dispenser

START,
; e N -
identification number, STOP, & CLOSE
account number READ ~
rite(id, value) C_OMMANDS'
display data

identification number, Eject

new cash value

EJECT,
WRITE &
READ
COMMANDS

light(LED number)

set_cash_value(amount)

set_id(id) get_limit

‘get_cash_value

™~

complete

get_id

Transaction)
reject

S

D-39 PUMP AGGREGATE OBJECT COMMUNICATION DIAGRAM

CASH CARD INSERTED

set _ set _
account id amount cash id
number value

account identification cash identification
number number value number

account get . . cash) o
number account identification value identification
number number number

D-42 CREDIT CARD OBJECT FUNCTION D-42 CASH CARD OBJECT FUNCTION
DIAGRAM DIAGRAM

Appendix D. OMT Specification Object Function Descriptions

AGSM Object Function Descriptions

Card Reader Object

write(id, new cash value)
WRITE id and new cash value to Cash Card
end_write

Eject
SEND EJECT COMMAND to CARD READER
end_gject

read
READ identification number
IF identification number isfor Cash Card
THEN Cash Card.create,
Cash Card.set_id(identification number)
READ cash value,
Cash Card.set_cash value(cash value),
SEND CASH CARD INSERTED EVENT to Pump
EL SEIF identification number isfor Corporate Credit Card
THEN Corporate Credit Card.create,
Corporate Credit Card.set_id(identification number)
READ account number,
Corporate Credit Card.set_account_number(account number),
SEND CREDIT CARD INSERTED EVENT to Pump
ELSE LED.light(Cannot Process Card)
Eject
ENDIF
end_read

Card Object
set_id_number(id)

identification number :=id
end set id number

get_id_number()
RETURN identification number
end_get_id_number

set_account_number(X)

RETURN
end_set_account_number

D--47

Appendix D. OMT Specification

get_account_number()
RETURN end_get_account_number
end_get_account_number

set_cash_value(x)
RETURN invalid account number
end set _cash value

get_cash value()
RETURN zero
end_get_cash value
Credit Card Object
set_account_number(account)
account number := account
end_set_account_number

get_account_number()
RETURN account number
end_get_account_number

Cash Card Object

set_cash value(vaue)
cash value ;= value
end set _cash value

get_cash value()

RETURN cash value
end_get cash value

Transaction Object

get_limt()
RETURN limit
end_get limt
set_cost_of_gas(amount:INTEGER)
IF amount <0
THEN cost of gas:=0
ELSE
cost of gas := amount
ENDIF

end_set cost of gas
Credit Transaction Object

D--48

Object Function Descriptions

Appendix D. OMT Specification Object Function Descriptions

authorize(Credit Card)
limt:=0
Authorization Request := BUILD (Remote Central Facility Address, Station ID, Pump
ID, Credit Card.get account number)
Communications Link.Add_to_Tx_List(Authorization Request)
end_authorize
reject()

LED.light(Cannot Process Card)
Card Reader.Eject
end_reject

complete(Credit Card)
Credit Transaction := BUILD(Remote Central Facility Address, Station ID, Pump
ID, Credit Card.get_account_number,
cost_of gas)
Communications Link.Add _to TX_List (Credit Transaction)
Card Reader.Eject
end_complete

Cash Transaction Object

authorize(Cash Card)
IF Cash Card.get_cash value>0
THEN limit := Cash Card.get_cash_value
GENERATE AUTHORIZED for Pump
ELSE GENERATE NOT AUTHORIZED for Pump
end_authorize

reject()
LED.light(Cash Vaue Used)
Card Reader.Eject
end_reject

compl ete(Cash Card)
new cash value := Cash Card.get_cash_value - cost of gas
Card Reader.write(Cash Card.get_id, new cash value)
Card Reader.Eject

end_complete

Gas Dispenser Object

clear_amount_dispensed()
OUTPUT BLANK COMMAND to GALLONS DISPLAY
OUTPUT BLANK COMMAND to COST DISPLAY

D--49

Appendix D. OMT Specification Object Function Descriptions

amount_dispensed := zero
end_clear_amount_dispensed

update_amount_dispensed()

READ meter value

Convert to hundreths of gallons

Set amount dispensed to converted value
end_supdate_amount_dispensed

update_display()
display gallons := amount dispensed/100
display cost := display gallons* price per gallon
OUTPUT display gallonsto GALLONS DISPLAY
OUTPUT display cost to COST DISPLAY
end_update display

get_amount_dispensed()
RETURN amount_dispensed
end_get_amount_dispensed

get_price()
RETURN price per gallon
end_get_price

?limit_reached(Transaction)
IF Transaction.get_limit = 0 THEN RETURN FALSE
IF amount dispensed/100 * price per gallon >= Transaction.get_limit
THEN RETURN TRUE
ELSE RETURN FALSE
end_?limit_reached

start_gas()
SEND START COMMAND to Gas Dispenser

end_start_gas

stop_gas()
SEND STOP COMMAND to Gas Dispenser

update_amount_dispensed
update_display
Transaction.set_cost_of _gas(amount_dispensed * 100/ price_per_gallon)
SEND STOPPED to Pump
end_stop _gas

LED Object
D--50

Appendix D. OMT Specification Object Function Descriptions

light(LED number)
IF LED number is Cash Value Used
THEN LED ON Cash Value Used LED
WAIT 10 Seconds
LED OFF Cash Value Used LED
ELSE LED ON Cannot Process Card LED
WAIT 10 Seconds
LED OFF Cannot Process Card LED
ENDIF
end_light

Detector Object

monitor_sensor():REAL
compute deltafrom Threshold using processed sensor data and Threshold
RETURN delta

end_monitor_sensor

send_threshold_exceeded()
GENERATE THRESHOLD EXCEEDED for Gas Station
end send threshold_exceeded

process_change(delta)
ENCAPSULATESDETECTOR STD
end_process_chage

Heat Detector Object

read()

READ sensor data from temperature detector

convert the sensor data to processed sensor data (i.e., a REAL value)
end_read()

Smoke Detector Object

read()
READ sensor data from particle counter

convert the sensor data to processed sensor data (i.e., a REAL value)
end_read()

Pump Object
process_event(EVENT)

ENCAPSULATES THE PUMP STATE TRANSITION DIAGRAM
end_process_event

D--51

Appendix D. OMT Specification Object Function Descriptions

Switch Object
handle_switch_interrupt()
EVENT := READ interrupt register
process_event(EVENT)
end_handle_switch_interrupt

process_event(event)
ENCAPSULATES SWITCH STATE TRANSITION DIAGRAM
end_process_event

send_switch_on
GENERATE ON for Pump
end send switch _on

send_switch_off
GENERATE OFF for Pump
end_send switch_off
Alarm Object
sound()
OUTPUT ALARM ON COMMAND to Alarm
end_sound

reset()
OUTPUT ALARM OFF COMMAND to Alarm
end reset
Gas Station Object
process_event(EVENT)

ENCAPSULATES the Gas Station STATE TRANSITION DIAGRAM
end_process_event

send_alarm_message()
Alarm Message := BUILD(Remote Central Facility Address, Station I1D)
Communications Link.Add_to_Tx_List(Alarm Message)

end_send alarm_message

send_closeg()
LOOP FOR EVERY Pump
GENERATE CLOSE for Pump
END LOOP
end send close

send_open()
LOOP FOR EVERY Pump

D--52

Appendix D. OMT Specification Object Function Descriptions

GENERATE OPEN for Pump
END LOOP
end_send open

Communications Link Object

handle link_state interrupt()
EVENT = INPUT INTERRUPT VALUE
analyze link(EVENT)

end_link_state interrupt

handle_message received interrupt()
POINTER := INPUT MESSAGE BUFFER ADDRESS
add_to_rcv_list(POINTER)

end_handle_message received_interrupt

handle_message send_interrupt()
POINTER := MESSAGE BUFFER ADDRESS
FREE(POINTER)
transmit_message

end_handle_message _send_interrupt

add _to_rcv_list(message)
Insert message at tail of RCV_LIST
end_add to rev _list

decode_message()
get message from head of RCV_LIST

IF messageisa RESTART COMMAND
THEN GENERATE a RESTART for the Gas Station
EL SEIF messageisa SHUTDOWN COMMAND
THEN GENERATE a SHUTDOWN for the Gas Station
EL SEIF message is an authorization reply
THEN IF message contains authorization
THEN GENERATE an AUTHORIZED for the appropriate
Pump
ELSE GENERATE aNOT AUTHORIZED for the appropriate
Pump
ENDIF
ENDIF
Remove message from the RCV LIST
FREE message for a new receive buffer
end_decode_message

analyze link_state(EVENT)
D--53

Appendix D. OMT Specification Object Function Descriptions

ENCAPSULATES Link STATE TRANSITION DIAGRAM
end_anayze link_state

add _to_tx_list(message)
Insert Message at tail of TX LIST
transmit_message

end add to tx list

transmit_message()
IF TX_LIST isempty THEN RETURN

IF statusis UP and no message is being transmitted
THEN start transmission of next message from TX LIST
ELSEIF LINK STATUSisDOWN
THEN save _credit_transactions
ENDIF
RETURN
end_transmit_message

save_credit_transactions()
FOR EVERY messageon TX LIST
IF message is a Credit Transaction
THEN Save message to CREDIT TRANSACTION LIST on Disk
ENDIF
Remove message from TX LIST
END FOR EVERY message on TX LIST LOOP
end_save credit_transactions

restore_credit_transactions()
FOR EVERY message on CREDIT TRANSACTION LIST on Disk
Add message to head of TX LIST
Remove message from CREDIT TRANSACTION LIST on Disk
END FOR EVERY message on CREDIT TRANSACTION List on Disk LOOP
end restore credit_transaction

D--54

Appendix E. ADARTS/COBRA Design Task Architecture Overview

Overview Of AGSM Task Architecture

The Automated Gas Station Management (AGSM) software comprises a set four tasks to
manage the gas station and a set of four tasks for each pump. This architectureisillustrated in
Figure E-3. The architecture is reproduced in Figure E-4 with the inter-task communications
identified by numbering the arcs between the tasks.

As shown in Figure E-3, each gas station consists of four tasks: 1) Gas Station Control, 2)
Detector Array, 3) Alarm, and 4) Communications Link. The Gas Station Control task, activated
by the arrival of messagesin the Gas Station Control Queue, manages the operation of the gas
station software. The Detector Array task, activated by a periodic timer event, polls each of the
smoke and heat detectorsinstalled at the gas station. When the concentration of smoke particles
or the temperature exceeds a pre-defined threshold at any of the smoke or heat detectors,
respectively, the Detector Array task notifies the Gas Station Control task. The Alarm task, when
enabled, continuously sounds the gas station alarm until the task isdisabled. The
Communications Link task acts as a conduit between the gas station and a remote central facility.
Messages sent from the station to the remote central facility and messages received at the station
from the remote cental facility pass through the Communications Link task. Thetask is activated
by messages arriving in the Transmit Messages Queue and by any of three hardware interrupts
(message sent, message received, and link state change).

The gas station includes a number of pumps, each of which is controlled through four
software tasks, as shown in Figure E-3. The main task managing a pump is the Pump Control
task which sequences and synchronizes external inputs that affect the pump. The Pump Control
task is activated by the arrival of a message in the Pump Control Queue. The Gas Dispenser
task, activated by a message from the Pump Control task, controls the dispensing of gasoline
through the pump’s gas dispenser. The Card Reader task, when activated by a Card Inserted
Interrupt, extracts information from a customer’s cash or credit card, updates the Card data
abstraction IHM, and awaits further commands issued on behalf of the Pump Control task. The
Switch task simply converts switch activation and deactivation interrupts into internal events and
sends them to the Pump Control Queue.

Turning attention to Figure E-4, some typical flows of control through the system can be
described. A customer approaches an operating pump at an open gas station and inserts a credit
or cash card causing a Card Inserted Interrupt (1). The Card Reader task determines the type of
card that was inserted. If the card is not recognized, then the card is g ected from the card reader.
If the card is recognized, an appropriate data abstraction object is created and the information
from the card is stored within the object (2). A card inserted event is then passed to the Pump
Control Queue (3). The Pump Control task examines the card inserted event and related card
information (4). If the card isacash card that is exhausted, then the Cash Value Used LED is
lighted (5) and the Card Reader task is asked to gject the card (14). If the card isacredit card,
then an authorization request is issued to the remote central facility viathe Transmit Messages
Queue (6). If acash card was inserted that had cash value, or if a credit card was inserted and an
authorization approval is received from the remote central facility (7), then the Pump Control
task updates the transaction IHM (8). Of course, the remote central facility may refuseto

E-2

Appendix E. ADARTS/COBRA Design Task Architecture Overview

authorize the credit transaction (7), in which case, the Pump Control task lights the Cannot
Process Card LED (5) and the Card Reader task is asked to gect the card (14).

Once atransaction has been authorized, gas can only be dispensed if the pump switchis
turned on by the customer. This event could occur in parallel with the transaction authorization
or it could occur after the transaction authorization, but the switch must be on before gas can be
dispensed. When the customer activates the switch (9), the Switch task generates a switch on
event for the Pump Control Queue (10).

Once atransaction is authorized and the switch is on, the Pump Control task issues a start
dispensing command (11) to the Gas Dispenser task. The Gas Dispenser task extracts any cash
limit from the transaction object (12) and dispenses gas until the limit is reached, or until the
Pump Control task ordersastop (11). Once complete, the Gas Dispenser task records the cost of
gas purchased in the transaction object (12) and issues a stopped event to the Pump Control
Queue (13).

The Pump Control task then completes the transaction. For a cash transaction, a new cash
value is computed for the customer’s cash card and the card is updated (14). For acredit
transaction, a credit transaction record is forwarded to the remote central facility via the Transmit
Messages Queue (6). In either case, the customer’s card will finally be gected (14).

Now consider the flow of control activated by an emergency at the gas station. A timer event
(15) will activate the Detectors task periodically so that the various smoke and heat detectors can
be polled. Should a pre-defined threshold be exceeded at any of the detectors, the Detectors task
will generate athreshold exceeded event for the Gas Station Control Queue (16). The Gas
Station Control task, once alerted to the emergency, send an Alarm On Command (17) to the
Alarm task and will send an alarm message to the remote central facility viathe Transmit
Messages Queue (18). The Gas Station Control task will also send a close command to each
Pump Control Queue (19) and will disable the Detectors task (20). When the Pump Control task
receives a close command any transaction in progress will be completed immediately and the
pump will be closed.

The gas station can also be shutdown and restarted remotely from the central facility (22).
When asked to shutdown, a close command isissued to each Pump Control Queue and when
asked to restart an open command is issued to each Pump Control Queue (19). The gas station
can also be shutdown and restarted due to changes in the state of the communications link.
When the communications link state changes an interrupt is issued by the communications
hardware (21). If the link goes down, then alink down event isissued to the Gas Station Control
Queue; otherwise, alink up event isissued to the Gas Station Control Queue (22). If the link
goes up, then the Gas Station Control task issues an open command to each Pump Control Queue
(29). If thelink goes down, then the Gas Station Control task issues a close command to each
Pump Control Queue (19).

Timer Message Message
Event Received Sent
Interrup Interrupt
Smoke) . .
Gas Station Transmit Outgoin
Sensor / Control Messages Mesgsaggs
Data Queue / Queue
e s
GAS COMMUNICATIO
DTFEFE;YOR — STATION NS
LINK +—
_—) Detector CONTROL .
Heat Command Incoming
Sensor A — Messages
Data
Link
Al - State
arm ALARM < Interrupt
Command L
Alarm
Command
o o
| Card Control I One Set Of
| Inserted Queue : , These Tasks
I Inte | For Each
: — PUMP Transaction I P
Card CONTROL | ump
: Data > l
| CARD Reader LED I
'Card READER Command Commands :
|ﬂeader L Dispenser :
ICommands Gas Commands |
Command E— |
|
: % GAS Meter :
! "/ DISPENSER /=, Data |
: Display |
| SWITCH Data |
| |
| |
| |
| |
: Switch Switch '
| Activate Deactivated E-3 AGSM TASK ARCHITECTURE DIAGRAM CREATED FROM C:OBRA
: Interrupt Interrupt SPECIFICATION |

Timer Message Message
Event Received Sent
15 22 Interrup Interrupt
Smoke
Gas Station Transmit i
Sensor Control Messages Outgomg
Data / Queue / Queue Messages
GAS 18 COMMUNICATIO
DE;;&;? R 16 |/ STATION NS
_—) Detector CONTROL HINK .
Heat Command Incoming
Sensor A — Messages
Data 20
/ Link
21 ' State
Alarm S 17
ALARM < Interrupt
Command Alarm—
Command
r—— —""—">">">">"">"”""”¥"”W\~""">"=>"--""“"">7""/= - - - - ____________________i
: Card Control 6 : One Set Of
| Inserted 1 Queue These Tasks
| ¢———
: Inte | PUMP Tran i | For Each
| card CONTROL ansaction | Pump
| ‘Dar > —» 5 |
| t
| aa CARD Reader LED :
C
'Card READER ommand Commands 12 |
|ﬂeader 14 Dispenser :
ICommands Gas Commands
| 4 11 Command :
|
: Card > GAS vt !
! "/ DISPENSER /=, Data |
: Display |
| SWITCH Data |
|
|
| 13 |
|
9 |
| Switch Switch '
| Activate Deactivated E-4 ANNOTATED TASK ARCHITECTURE DIAGRAM :
: Interrupt Interrupt I

AUTOMATED GAS STATION MANAGER

COBRA/ADARTS

TASK BEHAVIOR SPECIFICATIONS

E-6

Appendix E. ADARTS/COBRA Design Task Behavior Specifications

ALARM TASK BEHAVIOR SPECIFICATION

TASK: ALARM
A) TASK INTERFACE:
TASK INPUTS:

M essages. 1) Alarm Command (from Gas Station Control Task, tighly-coupled, no reply) -
requests that the alarm be activated or deactivated.

parameters - action (0 = Turn_Off, 1 = Turn_On)

TASK OUTPUTS:

Data: 1) Alarm Commands - sounds the alarm.
IHMs REFERENCED:
NONE

B) TASK STRUCTURE:

Criterion: Asynchronous activation of a periodic output task.
Data Transformations: Alarm (3.3)

C) TIMING CHARACTERISTICS:

Activation: Asynchronous by an Alarm Command message, and then executed periodically
until deactivated.

D) PRIORITY:

Medium - outputs alarm frequency to sound alarm.

Appendix E. ADARTS/COBRA Design Task Behavior Specifications

E) TASK EVENT SEQUENCING:

Loop A
Await(Alarm Command)
if Alarm Command.action = Turn_On
then Loop B
output ON to Alarm
if Waiting(Alarm Command)
then if Alarm Command.action = Turn_Off
then break Loop B
fi
fi
delay 100 milliseconds
End Loop B
End Loop A

F) ERRORS DETECTED:

Ignores unrecognized actions and ignores redundant actions.

Appendix E. ADARTS/COBRA Design Task Behavior Specifications

CARD READER TASK BEHAVIOR SPECIFICATION

TASK: Card Reader
A) TASK INTERFACE:
TASK INPUTS:

Events: 1) Card Inserted Interrupt (external event) - indicates customer inserted a
card.

M essages. 1) Reader Command (from Pump Control Task, tightly-coupled, no reply) -
requests that the Card Reader perform some action.

parameters - command (0 = Eject, 1 = write), new_cash_value (included
only with write command).

Data 1) Card Data - ASCII data encoding identificaton number and either a cash value
(for a Cash Card) or and account number (for a Credit Card).

TASK OUTPUTS:

M essages. 1) Card Event (to Pump Control Queue, loosely-coupled) - indicates
that a card was inserted.

parameters - action (0 = cash_card_inserted, 1 = credit_card_inserted),
Card (reference to Card Object)

Data: 1) Card Reader Commands - include READ, WRITE, and EJECT.

2) Card Data - ASCII data encoding identificaton number and a new cash value.
IHMs REFERENCED:

CARD_READER - encapsulates card reader operations.

CARD - encapsulates information from a Cash or Credit Card (updated by task).
B) TASK STRUCTURE:
Criterion: Asynchronous Device |/O Dependency

Data Transformations: Card Reader (1.3)

E-9

Appendix E. ADARTS/COBRA Design Task Behavior Specifications

C) TIMING CHARACTERISTICS:

Activation: Asynchronousby a card inserted interrupt or by a message arriving from the
Pump Control Task.

D) PRIORITY:
High - for interrupt handling, Medium for responding to messages.

E) TASK EVENT SEQUENCING:

CARD INSERTED INTERRUPT VECTOR := wakeup(CARD_READER)

L oop
Await()
End L oop

wakeup(CARD_READER)
if (CARD_READER.read = FALSE) then return
L oop
Await(Reader Command from Pump Control Task)
if (Reader Command.command = Eject)
then CARD_READER.Eject
return
elsif (Reader Command.command = write)
then CARD_READER.write(Reader Command.new_cash_value)
fi
End Loop
End wakeup

F) ERRORS DETECTED:

Ignores unrecognized commands.

E-10

Appendix E. ADARTS/COBRA Design Task Behavior Specifications

COMMUNICATIONS LINK TASK BEHAVIOR

SPECIFICATION

TASK: Communications Link

A) TASK INTERFACE

TASK INPUTS:

Events:

Messages.

1) Link State Interrupt (external event) - indicates that the communications
hardware has detected a change in link state.

2) Message Received Interrupt (external event) - indicates that the
communications hardware has compl eted reception of an incoming

message.

3) Message Sent Interrupt (external event) - indicates that the communications
hardware has completed transmission of an outgoing message.

1) Transmit Messages Queue

a) Alarm Message (from Gas Station Control Task, loosely-coupled) - requests
transmission of an Alarm Message to the Remote Central Facility.

parameters - remote_address, station _id

b) Authorization Request (from Pump Control Task, loosely-coupled) - requests
transmission of an Authorization Request Message to the Remote Central
Facility.
parameters - remote_address, station_id, pump_id, account_number

¢) Credit Transaction (from Pump Control Task, loosely-coupled) - requests
transmission of a Credit Transaction Message to the Remote Central

Facility.

parameters - remote_address, station_id, pump_id, account_number,
amount_purchased

d) Received (from self, loosely-coupled) - requests that an incoming message by
decoded.

parameters - none
E-11

Appendix E. ADARTS/COBRA Design Task Behavior Specifications

Data 1) Incoming Messages from the communications hardware.
TASK OUTPUTS:

M essages. 1) RCF Event (to Gas Station Control Queue, loosely-coupled) - Remote Central
Facility requests the gas station to change its operating stete.

parameters - rcf_event (0 = shutdown, 1 = restart)

2) Link Event (to Gas Station Control Queue, loosely-coupled) - indicates that the
communications link has changed state.

parameters - status (0 = link_down, 1 = link_up)

3) Credit Authorization Event (to Pump Control Queue, |oosely-coupled) -
informs the Pump about a customer’s credit status.

parameters - status (0 = not_okay, 1 = okay)
Data: 1) Outgoing Messages to the communications hardware.
IHMs REFERENCED:
LINK - encapsulates operations for handling messages.
B) TASK STRUCTURE:

Criterion: Asynchronous Device I/0O Dependency, Asynchronous Event Dependency, and
Functional Cohesion

Data Transformations: Addto Rev List (2.1), Decode Message Header (2.2),
Analyze Link State (2.3), Add to Tx List (2.4),
Transmit Message (2.5.1), Save Credit Transactions (2.5.2),
Restore Credit Transactions (2.5.3)

C) TIMING CHARACTERISTICS:

Activation: Asynchronous by a message arriving in the Transmit Messages Queue and by the
occurrence of various communications hardware interrupts.

D) PRIORITY:

High - for interrupt handling routines, Medium for processing the input queue.

E-12

Appendix E. ADARTS/COBRA Design Task Behavior Specifications

E) TASK EVENT SEQUENCING

COMMUNICATIONSH/W INTERRUPT VECTORO:
COMMUNICATIONSH/W INTERRUPT VECTOR 1:
COMMUNICATIONSH/W INTERRUPT VECTOR 2:

Link_State
Message Rxed
Message Txed

L oop
Await(Message Arriva in Transmit Messages Queue)
Switch (Message Type)
Case Alarm Message
Case Authorization Request
Case Credit Transaction
LINK.add_to tx_list(Message)
LINK .transmit_message
break
Case Received
decode_message(LINK)
break
End Switch
End L oop

Link_State
event := input link_status _register
Switch (LINK.analyze link(event))
Casel
send Link Event(status:=link_up) to Gas Station Control Queue
break
Case-1
send Link Event(status:=link_down) to Gas Station Control Queue
break
End Switch
End Link_State

Message Rxed
message := input received_message pointer
LINK.add_to_rcv_list(message)
send Message(Type=Received) to Transmit Messages Queue
End_Message Rxed

Message Txed
message := input sent_message_pointer
fr ee(message)

LINK.transmit_message
End_Message Txed

E-13

Appendix E. ADARTS/COBRA Design Task Behavior Specifications

decode_message(LINK)

Message := LINK.remove from_rcv_list
Switch(Message Type)
Case Shutdown
send RCF Event(rcf_event:=shutdown) to Gas Station Control Queue
break
Case Restart
send RCF Event(rcf_event:=restart) to Gas Station Control Queue
break
Case Authorization Reply
Switch response
Case Not Authorized
send Credit Authorization Event(status:=not_okay)
to Pump Control Queue for Pump ID
Case Authorized
send Credit Authorization Event(status:=okay)
to Pump Control Queue for Pump ID
End Switch
End Switch
free(Message)
end_decode_message

F) ERRORS DETECTED:

Ignores unrecognized messages and events.

E-14

Appendix E. ADARTS/COBRA Design Task Behavior Specifications

DETECTOR ARRAY TASK BEHAVIOR SPECIFICATION

TASK: Detector Array

A) TASK INTERFACE:

TASK INPUTS:
Events: 1) Timer (external event) - stimulates the task to poll its various smoke
and hest detectors.

M essages. 1) Detector Command (from Gas Station Task, tightly-coupled, no reply) -
requests that the task enable or disable itself.

parameters - command (0 = disable, 1= enable)
Data: 1) Smoke Sensor Data from the smoke detectors.
2) Heat Sensor Data from the heat detectors.
TASK OUTPUTS:

Messages: 1) Emergency Event (to Gas Station Control Queue, loosely-coupled) - indicates
that the gas station is on fire.

parameters - none
IHMs REFERENCED:

HEAT_DETECTOR - encapsulates raw sensor data from heat detectors and
provides operations to test for threshold.

SMOKE_DETECTOR - encapsulates raw sensor data from smoke detectorsand
provides operations to test for threshold.

B) TASK STRUCTURE:
Criterion: Periodic I/O Dependency

Data Transformations: Detector Array (3.2)

E-15

Appendix E. ADARTS/COBRA Design Task Behavior Specifications

C) TIMING CHARACTERISTICS:

Activation: Periodic - activated by atimer, when task is enabled.
D) PRIORITY:

High - monitors safety conditions.

E) TASK EVENT SEQUENCING:

TIMER VECTOR := Poll_Detectors

Start Timer
L oop
Await(Detector Command)
Switch (Detector Command.command)
Casedisable
Stop Timer
break
Case enable
Stop Timer
Start Timer
break
End Switch
End Loop
Poll_Detectors

For Every HEAT_DETECTOR
HEAT DETECTOR.read
if (HEAT_DETECTOR.monitor_sensor)
then send Emergency Event to Gas Station Control Queue
End For
For Every SMOKE_DETECTOR
SMOKE_DETECTOR.read
if (SMOKE_DETECTOR.monitor_sensor)
then send Emergency Event to Gas Station Control Queue
End For
End_Poll_Detectors

F) ERRORS DETECTED:

Ignores unrecognized commands.

E-16

Appendix E. ADARTS/COBRA Design Task Behavior Specifications

GAS DISPENSER TASK BEHAVIOR SPECIFICATION

TASK: Gas Dispenser
A) TASK INTERFACE:
TASK INPUTS:

M essages. 1) Gas Command (from Pump Control Task, tightly-coupled, no reply) - requests
that the Gas Dispenser start or stop pumping gas.

parameters - command (0 = stop_dispensing, 1 = start_dispensing),
Transaction (reference to transaction object).

Data: 1) Meter Data - count of the amount of gas dispensed.
2) TRANSACTION.limit - cash limit on amount of gas to be dispensed
TASK OUTPUTS:

M essages. 1) Stopped Event (to Pump Control Queue, |oosely-coupled) - indicates
that gasis no longer being dispensed.

Data 1) Dispenser Commands - turns dispenser ON and OFF.
2) Display Data - amount and cost of gas to be displayed for customer viewing.
3) TRANSACTION.cost_of gas - records the cost of the customer’s purchase.
IHMs REFERENCED:
GAS_DISPENSER - encapsul ates dispenser operations.
TRANSACTION - encapsulates transaction data.
B) TASK STRUCTURE:

Criterion: Controls Gas Dispenser Device, Activated and Deactivated Asynchronously, but
once activated, can run until alimit is reached.

Data Transformations: Gas Dispenser (1.5)

C) TIMING CHARACTERISTICS:

E-17

Appendix E. ADARTS/COBRA Design Task Behavior Specifications

Activation: Asynchronous by a message arriving from the Pump Control Task.

D) PRIORITY:

High - must monitor dispensing operation on a polling basis.

E) TASK EVENT SEQUENCING:

L oop

Await(Dispenser Command)
If Dispenser Command.command not = start_dispensing

then continue
TRANSACTION := Dispenser Command.Transaction
GAS DISPENSER:.clear_amount_dispensed
GAS DISPENSER.start_gas
L oop

GAS_DISPENSER.update_amount_dispensed

GAS DISPENSER.update _display

if GAS_DISPENSER.?imit_reached(TRANSACTION)

then break
if Waiting (Dispenser Command)
then if Dispenser Command.command = stop_dispensing
then break
End Loop
GAS DISPENSER.stop_gas
GAS_DISPENSER.update_amount_dispensed
GAS DISPENSER.update display
TRANSACTION.set_cost_of gas(GAS_DISPENSER.get_amount_dispensed * 100 /
GAS DISPENSER.get_price)

send Stopped Event to Pump Control Queue

End L oop

F) ERRORS DETECTED:

Ignores unrecognized commands.

E-18

Appendix E. ADARTS/COBRA Design Task Behavior Specifications

GAS STATION CONTROL TASK BEHAVIOR
SPECIFICATION

TASK: Gas Station Control

A) TASK INTERFACE:

TASK INPUTS:

Messages: 1) Gas Station Control Queue

a) RCF Event (from Communications Link Task, loosely-coupled) - indicates that
a command from the Remote Central Facility has arrived.

parameters - rcf_event (0 = shutdown, 1 = restart)
b) Link Event (from the Communications Link Task,
loosely-coupled) - indicates the communications link has changed
state
parameters - status (0 = link_down, 1 = link_up)

¢) Emergency Event (from Detectors Task, loosely-coupled) - indicates
that the gas station is on fire.

parameters - none
TASK OUTPUTS:

M essages. 1) Gas Station Event (to Pump Control Queue, loosely-coupled) - requests
the pump to change its operating state.

parameters - command (0 = close, 1 = open)
2) Alarm Message (to Transmit Messages Queue, |oosely-coupled) -
informs the Remote Central Facility about an emergency at
the gas station.

parameters - remote address, station _id

3) Detector Command (to Detectors Task, tightly-coupled, no reply) - requests
that the Detectors be enabled or disabled.

E-19

Appendix E. ADARTS/COBRA Design Task Behavior Specifications

parameters - command (0 = disable, 1 = enable)

4) Alarm Command (to the Alarm Task, tightly-coupled, no reply) -
reguests that the alarm be activated or deactivated

parameters - action (0 = Turn_Off, 1 = Turn_On)
IHMs REFERENCED:
GAS _STATION - encapsulates the Pump STD.
B) TASK STRUCTURE:

Criterion: Control Dependency (Gas Station task contains STD,
encapuslated in the Gas Station.process_event operation, that sequences task
operations.) and Sequential Cohesion.

Control Transformations: Gas Station Control (3.1)

Data Transformations: Send Alarm Message (3.4), Send Opens (3.5), and Send
Closes (3.6)

C) TIMING CHARACTERISTICS:

Activation: Asynchronous by a message arriving in the Gas Station Control Queue.
D) PRIORITY:

Medium - lower than the I/O tasks.

E) TASK EVENT SEQUENCING:

L oop
Await(Message Arrival in Gas Station Control Queue)
Switch (Message Type)
Case RCF Event
if RCF Event.rcf_event = shutdown
then event := SHUTDOWN
elsif RCF Event.rcf_event = restart
then event := RESTART
fi
break
CaseLink Event
if Link Event.status = link_down
then event := LINK_DOWN

E-20

Appendix E. ADARTS/COBRA Design Task Behavior Specifications

elsif Link Event.status = link_up
then event := LINK_UP
fi
break
Case Emergency Event
Emergency Event.event := THRESHOLD_EXCEEDED
break
End Switch
GAS _STATION.process_event(event)
End Loop

F) ERRORS DETECTED:

Ignores Gas Station STD events that are not recognized.

E-21

Appendix E. ADARTS/COBRA Design Task Behavior Specifications

PUMP CONTROL TASK BEHAVIOR SPECIFICATION

TASK: Pump Control

A) TASK INTERFACE:

TASK INPUTS:

M essages:

Data:

1) Pump Control Queue

a) Switch Event (from Switch Task, loosely-coupled) - indicates that a
significant switch event has occurred

parameters - switch_event (0 = switch_off, 1 = switch_on)

b) Card Event (from Card Reader Task, loosely-coupled) - indicates
that a card was inserted.

parameters - action (0 = cash_card _inserted, 1 = credit_card_inserted),
Card (reference to Card Object)

¢) Gas Station Event (from Gas Station Control Task, loosely-coupled) - requests
that the Pump change its operating state.

parameters - command (0 = close, 1 = open)

d) Authorization Event (from the Communications Link Task or from internal to
Pump Control Task, loosely-coupled)

parameters - status (0 = not_okay, 1 = okay)

e) Stopped Event (from Gas Dispenser Task, loosely-coupled) - indicates
that gasis no longer being dispensed.

parameters - none

1) Cash and Credit Card Information from the Card IHM (which is created by
the Card Reader Task)

2) Transaction Information from the Transaction IHM (which is created by this
task)

E-22

Appendix E. ADARTS/COBRA Design Task Behavior Specifications

TASK OUTPUTS:

M essages. 1) Reader Command (to Card Reader Task, tightly-coupled, no reply) - requests
the Card Reader to execute a command.

parameters - command (O =Eject, 1 = write), new_cash_value (included
only with the write command)

2) Gas Command (to Gas Dispenser Task, tightly-coupled, no reply) - requests
that the Gas Dispenser start or stop pumping gas.

parameters - command (0 = stop_dispensing, 1 = start_dispensing),
Transaction (reference to transaction object).

3) Authorization Request (to the Transmit Messages Queue, loosely-coupled) -
requests that the Remote Central Facility check credit authorization
for a customer.

parameters - remote_address, station_id, pump_id, account_number

4) Credit Transaction (to the Transmit M essages Queue, |oosely-coupled) -

informs the Remote Central Facility about a completed credit

transaction.

parameters - remote_address, station_id, pump_id, account_number,
amount_purchased

Data 1) Transaction - created by this task.

2) LED Commands - to light and extinguish the Pump’'s LEDs
IHMs REFERENCED:

PUMP - encapsulates the Pump STD

CARD - encapsulates cash or credit card information read by the Card Reader
Task.

TRANSACTION - encapsulates an on-going transaction.

B) TASK STRUCTURE:

E-23

Appendix E. ADARTS/COBRA Design Task Behavior Specifications

Criterion: Control Dependency (Pump task contains STD, encapuslated in
the Pump.process_event operation, that sequences task operations) and Sequential
Cohesion.

Control Transformation: Control Pump (1.1.1)

Data Transformations: Authorize Transaction (1.1.2), Establish Transaction
(1.1.3),

Complete Transaction (1.1.4), Reject Transaction (1.1.5)
C) TIMING CHARACTERISTICS:
Activation: Asynchronous by a message arriving in the Pump Control Queue.
D) PRIORITY:
Medium - lower than the I/O tasks.
E) TASK EVENT SEQUENCING:

L oop
Await(Message Arrival in Pump Control Queue)
Switch (Message Type)
Case Switch Event
if Switch Event.switch_event = switch_off
then event := OFF
elsif Switch Event.switch_event = switch_on
then event := ON
fi
break
Case Card Event
CARD := Card Event.Card
if Card Event.action = cash_card_inserted
then event:= CASH_CARD_INSERTED
elsif Card Event.action = credit_card_inserted
then event:= CREDIT_CARD_INSERTED
fi
break
Case Gas Station Event
If Gas Station Event.command = close
then event := CLOSE
elsif Gas Station Event.command = open
then event := OPEN
fi
break

E-24

Appendix E. ADARTS/COBRA Design Task Behavior Specifications

Case Credit Authorization Event
if Credit Authorization Event.status = not_okay
then event := NOT_AUTHORIZED
elsif status = okay
then event := AUTHORIZED
fi
break
Case Stopped Event
event := Stopped
break
End Switch
PUMP.process_event(event, CARD)
End Loop

F) ERRORS DETECTED:

Ignores Pump STD events that are not recognized.

E-25

Appendix E. ADARTS/COBRA Design Task Behavior Specifications

SWITCH TASK BEHAVIOR SPECIFICATION

TASK: Switch

A) TASK INTERFACE:

TASK INPUTS:
Events: 1) Switch Activated Interrupt (external event) - indicates pump switch was turned
on.
2) Switch Deactivated Interrupt (external event) - indicates pump switch was
turned off.

TASK OUTPUTS:

M essages. 1) Switch Event (to Pump Control Queue, loosely-coupled) - indicates that a
switch event has occurred.

parameters - switch_event (0 = switch_off, 1 = switch_on)

IHMs REFERENCED:

None
B) TASK STRUCTURE:
Criterion: Asynchronous Device I/O
Data Transformations : Switch (1.2)
C) TIMING CHARACTERISTICS:
Activation: Asynchronous by a Switch Interrupt.
D) PRIORITY:

High - captures and records hardware interrupts that would otherwise be lost.

E-26

Appendix E. ADARTS/COBRA Design Task Behavior Specifications

E) TASK EVENT SEQUENCING:

SWITCH INTERRUPT VECTOR := handle_switch_interrupt()
L oop

Await()
End L oop

handle_switch_interrupt()
input SWITCH_INTERRUPT_REGISTER
if switch_activated
then send Switch Event(switch_event:=switch_on)
to Pump Control Queue
fi
if switch_deactivated
then send Switch Event(switch_event:=switch_off)
to Pump Control Queue
fi

F) ERRORS DETECTED:

None.

E-27

AUTOMATED GAS STATION MANAGER

COBRA/ADARTS

INFORMATION HIDING MODULE

SPECIFICATIONS

E-28

Appendix E. ADARTS/COBRA Design Information Hiding Module Specifications

AUTOMATED GAS STATION MANAGER
INFORMATION HIDING MODULE SPECIFICATIONS

IHM: CARD_READER
Information Hidden: The details of reading and writing information on a magnetic card strip
and
of gecting the card from a specific card reader.
Module Structure: Device Interface Module
Assumptions: Will only be accessed sequentially, i.e., no concurrent access.
Anticipated Changes:
Operations:
1) read
Function: Reads thefirst field, i.e., identification number, on a card magnetic strip to
establish whether the card is a credit or cash card. Reads the remaining
information on the card (i.e., cash value for a cash card and account
number for a credit card), converts the ASCII datafrom the card into
numeric form and stores it using the CARD IHM. Finally, returns
TRUE. If theidentification number cannot be recognized, then the card is
gected and FALSE isreturned.
Input Parameters: None
Output Parameters. Status (FALSE = invalid card, TRUE = valid card)
2) gect
Function: Sends an Eject Command to the Card Reader.
Input Parameters: None
Output Parameters:

3) write

Function: Writes a new cash value to a cash card.

E-29

Appendix E. ADARTS/COBRA Design Information Hiding Module Specifications

Input paramters: new cash value
Output parameters. None
IHM: CARD
Information Hidden: Card Information Data Store
Module Structure: Data Abstraction Module

Assumptions: Shared between two tasks; however, accessis sequenced so that
no Simultaneous access occurs.

Anticipated Changes:
Operations:
1) set_id_number

Function: Stores input id into identification number. Sets cash value and account
number to zero.

Input Parameters: id
Output Parameters: None
2) get_id_number
Function: Extracts internal identification number and returnsit in output parameter.
Input Parameters: None
Output Parameters: identification number
3) is_cash_card
Function: Determinesif the CARD is holding cash card or credit card information.
Input Parameters: None
Output Parameters: TRUE if Cash Card, FASLE if Credit Card

4) set_cash_vaue

E-30

Appendix E. ADARTS/COBRA Design Information Hiding Module Specifications

Function: If thisisa Cash Card, then stores input value into cash value.
Input Parameters: value
Output Parameters. None

5) get_cash_value

Function: If thisis a Cash Card, then extracts internal cash value and returnsit in
output parameter.

Input Parameters: None
Output Parameters. cash value
6) set account_number
Function: If CARD iscredit_card, then stores input number into account number.
Input Parameters: number
Output Parameters. None
7) get_account_number

Function: If CARD is credit card, then extracts internal account number and returns
it in output parameter.

Input Parameters: None

Output Parameters. account number
IHM: GAS DISPENSER
Information Hidden: Details of the Gas Dispenser hardware
Module Sructure: Device Interface Module
Assumptions: Accessed by onetask only.
Anticipated Changes:
Operations:
1) clear_amount_dispensed

E-31

Appendix E. ADARTS/COBRA Design Information Hiding Module Specifications

Function: Blanksto GALLONS display and the COST display. Setsthe amount
dispensed attribute to zero.

Input Parameters: None
Output Parmeters: None
2) update_amount_dispensed

Function: Reads the current value of the gas dispenser’'s meter, converts the value
to an integer and stores the integer as the amount dispensed attribute.

Input Parameters: None
Output Parameters. None
3) update_display

Function: Converts amount dispensed attribute into a display format and computes
cost of gas dispensed as a display format and outputs these values to the

appropriate displays.

Input Parameters: None

Output Parameters. None
4) get_amount_dispensed

Function: Returns the amount dispensed attribute

Input Parametes: None

Output Parameters: amount dispensed
5) get_price

Function: Returns the price per gallon

Input Parameters: None

Output Parameters. price per gallon

6) ?limit_reached

E-32

Appendix E. ADARTS/COBRA Design Information Hiding Module Specifications

Function: Determinesif the cost limit of gas to be dispensed has been reached.
Input Parameters: TRANSACTION
Output Parameters: TRUE (if limit reached) or FALSE (if limit not reached)
7) start_gas
Function: Outputsa START COMMAND to the gas dispenser
Input Parameters: None
Output Parameters: None
8) stop_gas
Function: Outputs a STOP COMMAND to the gas dispenser.
Input Parameters: None
Output Parameters: None
IHM: GAS STATION

Information Hidden: Gas Station Control State Transition Diagram and a few supporting
operations.

Module Structure: State Transition Module (primarily)
Assumptions: Used by only one task
Anticipated Changes:
Operations:
1) process_event
Function: Execute the Gas Station Control STD.
Input Parameters: Event
Output Paramters: None

IHM: HEAT_DETECTOR

E-33

Appendix E. ADARTS/COBRA Design Information Hiding Module Specifications

Information Hidden: Details of accessing the heat detector hardware.
Module Structure: Device Interface Module

Assumptions: Will be accessed by only one task.

Anticipated Changes:

Operations:

1) read

Function: Inputs sensor data from a heat detector and converts that sensor data
to aninternal form that is stored in the processed sensor data attribute.

Input Parameters: None
Output Paramters: None
2) monitor_sensor
Function: Computes a delta between processed sensor data and a known threshold
If the delta exceeds the threshold, then returns TRUE; else, returns
FALSE.
Input Parameters: None
Output Parameters: TRUE if threshold exceeded, FALSE otherwise,
IHM: LINK
Information Hidden: Details of the communications link hardware.
Module Structure: Device Interface Module
Assumptions: Accessed by only one task.
Anticipated Changes:
Operations:
1) add to rev_list

Function: Inserts an incoming message at the end of the receive list

E-34

Appendix E. ADARTS/COBRA Design Information Hiding Module Specifications

Input Parameters: Message to insert
Output Parameters. None
2) analyze link_state

Function: Determines whether the link has gone up or down. Returns new state if
change occurs, FALSE otherwise.

Input Parameter: Event
Output Parameter: 1= Link came up, -1 = Link went down, O = no change.
3) add_to_tx_list

Function: Inserts the input message athe end of the transmit list, then stimulates a
transmission.

Input Parameters: Message to send
Output Parameters: None
4) transmit message
Function: If the transmit list is not empty and the link is up and amessage is not
aready being transmitted, then the next message transmission is started.
If the link is down, then save credit_transactionsis called.
Input Parameters: None
Output Parameters. None
5) save credit_transactions
Function: Cycles through the transmit message list: if amessageisa credit
transaction, then it is written to the end of afile. In any case, the message
is removed from the transmit message list.
Input Parameters: None
Output Parameters. None
6) restore_credit_transactions

Function: Cycles through the file of saved credit transactions, moving each credit

E-35

Appendix E. ADARTS/COBRA Design Information Hiding Module Specifications

transaction from the file to the head of the transmit messagelist. The
fileisthen deleted.

Input Parameters: None
Output Parameters: None
7) remove_from_rcv_list
Function: Removes a message, if any, from the head of the receive message list.
Input Parameters: None
Output Parameters: pointer to message or zero, if the receive message list is empty.
IHM: PUMP
Information Hidden: The Pump Control STD
Module Structure: State Transition Module
Assumptions: Accessed by asingle task.
Anticipated Changes:
Operations:
1) process_event
Function: Execute the appropriate transition in the Pump Control STD.
Input Parameters: Event and CASH_CARD or CREDIT_CARD
Output Parameters: None
IHM: SMOKE_DETECTOR
Information Hidden: Details of accessing the smoke detector hardware.
Module Structure: Device Interface Module
Assumptions: Will be accessed by only one task.

Anticipated Changes:

E-36

Appendix E. ADARTS/COBRA Design Information Hiding Module Specifications

Operations:
1) read

Function: Inputs sensor data from a smoke detector and converts that sensor data
to aninternal form that is stored in the processed sensor data attribute.

Input Parameters: None
Output Paramters: None
2) monitor_sensor
Function: Computes a delta between processed sensor data and a known threshold
If the delta exceeds the threshold, then returns TRUE; else, returns
FALSE.
Input Parameters: None
Output Parameters: TRUE if threshold exceeded, FALSE otherwise,
IHM: TRANSACTION

Information Hidden: On-going Transaction Data Store

Module Sructure: Data Abstraction Module

Assumptions: Access shared by two tasks, but access is sequenced so that no
simultaneous access will occur.

Anticipated Changes:

Operations:

1) get_limit

Function: Extracts the value stored in the limit attribute.
Input Parameters: None
Output Parameters: limit
2) set_cost_of gas
Function: Stores input value into the cost of gas attribute.

E-37

Appendix E. ADARTS/COBRA Design Information Hiding Module Specifications

Input Parameters: value
Output Parameters. None
3) is_cash_transaction
Function: Determinesif transaction is cash or credit.
Input Paramters: None
Output Parameters. TRUE is cash transaction, FALSE is credit transaction.
4) set_limit
Function: Sets the limit to the input value.
Input Parameters: value
Output Parameters. None
5) get_cost_of gas
Function: Returns the value of the cost of gasfield.
Input Parameters: None

Output Parameters. cost of gas

E-38

AUTOMATED GAS STATION MANAGER

COBRA/ADARTS

SYSTEM ARCHITECTURE

E-39

Appendix E. ADARTS/COBRA Design System Architecture Overview

Overview Of AGMS System Architecture

The AGMS system architecture, illustrated in Figure E-41, augments the task architecture,
shown previously in Figure E-3, by identifying the information hiding modules (IHMs) within
the system and by showing the allocation of those IHMs among tasks. A Gas Station IHM is
included within the Gas Station Control task. Within the Detectors task, a Heat Detector IHM is
included for each heat detector in the gas station and a Smoke Detector IHM isincluded for each
smoke detector. The Communications Link task includesaLink IHM.

Turning to the tasks associated with each pump, the Pump Control task includes a Pump
IHM, the Card Reader task includes a Card Reader IHM, and the Gas Dispenser task includes a
Gas Dispenser IHM. (The Switch task contains and uses no IHMs.) Within each set of pump
tasks, the Card and Transaction IHMs play akey role.

The Card IHM is used by the Card Reader task to store the information read from a
customer’s cash card or credit card. Thisinformation is them accessible to the Pump Control
Task. The Pump Control Task uses the information maintained by the Card IHM to authorize a
cash transaction and to compute a new cash value. The Pump Control Task uses the information
maintained by the Card IHM to request, from the remote central facility, authorization of a credit
transaction and to report the completion of atransaction to the remote central facility. The Gas
Dispenser task uses the Transaction IHM to determine if alimit is set on the cost of gasto be
dispensed and to store the cost of any gas that is dispensed from the gas dispenser. The Pump
Control task uses the Transaction IHM to set a transaction limit, to get the cost of the gas
dispensed, and to determine if the transaction is cash or credit.

E-40

Timer
Event

Smoke

DCommunications Link

Detectors Gas Station Gas Station Control
Sensor Control Messages
Data Smoke Queue Queue
> Detecto >
Heat % Gas Station g] Outgoing
Detector g g
/ / / — Messages
Detector
C d .
Heat ~omman Incoming
Sensor A
Data Messages
Alarm
— Message Message
Al / _ Received Link Sent
arm In
| Interrupt Interrupt
Commands < State
«— Alarm Interrupt
Command
P .
card P Pump Control Transaction One Set Of
rted Queue These Tasks
Inter Card Reader Pump = cash ransacti L0000 For Each
Card - < Pump
<—»r —> ge
Data Card
R:;der Reader
Command
card LED Commands
eader Gas Dispenser
Commands p
Gas Gas
Card Command ([][IDispenser
Switch of L] D
> set_id_numbe| getﬁidinumber{ —_— ISpenser
— = Commands
\ \ Meter
C setﬁcashfval%e get_cash_v%lueﬂ— —» Data
| | Display
p- set #ccoum number | |get account number < Data
Activate Deactivated
Interrupt Interrupt E-41 AGSM SYSTEM ARCHITECTURE DIAGRAM CREATED FROM COBRA

SPECIFICATION

APPENDIX F. AUTOMATED GAS STATION
MANAGER DESIGN
FROM OMT SPECIFICATION
USING OODARTS

AUTOMATED GAS STATION MANAGER

OMT/OODARTS

OVERVIEW OF

ACTIVE OBJECT ARCHITECTURE

F-1

Appendix F. OODARTS/OMT Design Active Object Architecture Overview

Overview Of AGSM Active Object Architecture

The Automated Gas Station Management (AGSM) software comprises a set of three active
objects (AOs) to manage the gas station and a set of five active objects (AOs) for each pump.
This architectureisillustrated in Figure F-3. The architecture is reproduced in Figure F-4 with
the inter-object communications identified by numbering the arcs between the AOs.

As shown in Figure F-3, each gas station consists of three AOs: 1) Gas Station Control, 2)
Detectors, and 3) Communications Link. The Gas Station Control AO, activated by the arrival of
messages in the Gas Station Control Queue, manages the operation of the gas station software.
The Detectors AO, activated by a periodic timer event, polls each of the smoke and heat detectors
installed at the gas station. When the concentration of smoke particles or the temperature
exceeds a pre-defined threshold at any of the smoke or heat detectors, respectively, the Detectors
AO notifies the Gas Station Control AO. The Communications Link AO acts as a conduit
between the gas station and a remote central facility. Messages sent from the station to the
remote central facility and messages received at the station from the remote cental facility pass
through the Communications Link AO. The AO is activated by messages arriving in the
Transmit Messages Queue and by any of four hardware interrupts (message sent, message
received, link state change, and time-out).

The gas station includes a number of pumps, each of which is controlled through five AOs, as
shown in Figure F-3. The main object managing a pump is the Pump Control AO which
sequences and synchronizes external inputs that affect the pump. The Pump Control AO is
activated by the arrival of a message in the Pump Control Queue. The Gas Dispenser Control
Ao, activated by a message from the Pump Control AO, controls the dispensing of gasoline
through the pump’s gas dispenser. The Card Reader Control Ao, when activated by a Card
Inserted Interrupt, extracts information from a customer’s cash or credit card, creates an
appropriate Card data abstraction object, and awaits further commands issued under control of
the Pump Control AO. The Switch Monitoring AO simply converts switch activation and
deactivation interrupts into internal events and sends them to the Pump Control Queue. The
LED Control AO, activated by messages arriving in the Light Queue, controls the lighting and
extinguishing of the two LEDs (Cash Value Used and Cannot Process Card) on the pump.

Turning attention to Figure F-4, some typical flows of control through the system can be
described. A customer approaches an operating pump at an open gas station and inserts a credit
or cash card causing a Card Inserted Interrupt (1). The Card Reader Control Ao determines the
type of card that was inserted. If the card is not recognized, then the LED Control AO is asked to
light the Cannot Process Card LED (2). If the card is recognized, an appropriate data abstraction
object is created and the information from the card is stored within the object (3). A card
inserted event is then passed to the Pump Control Queue (4). The Pump Control AO examines
the card inserted event and related card information (5). If the card isacash card that is
exhausted, then arequest is sent to the LED Control AO to light the Cash Value Used LED (6)
and the Card Reader Control AO is asked to gect the card (14). If the card is a credit card, then
an authorization request isissued to the remote central facility viathe Transmit Messages Queue
(7). If acash card was inserted that had cash value, or if acredit card was inserted and an
authorization approval is received from the remote central facility (8), then the Pump Control AO

F-5

Appendix F. OODARTS/OMT Design Active Object Architecture Overview

creates an appropriate transaction object (9). Of course, the remote central facility may refuseto
authorize the credit transaction (8), in which case, the Pump Control AO issues arequest to the
LED Control AO to light the Cannot Process Card LED (6) and the Card Reader Control Ao is
asked to gect the card (14).

Once atransaction has been authorized, gas can only be dispensed if the pump switchis
turned on by the customer. This event could occur in parallel with the transaction authorization
or it could occur after the transaction authorization, but the switch must be on before gas can be
dispensed. When the customer activates the switch (10), the Switch Monitoring Ao generates a
switch on event for the Pump Control Queue (10a).

Once atransaction is authorized and the switch is on, the Pump Control AO issues a start
dispensing command (11) to the Gas Dispenser Control Ao. The Gas Dispenser Control Ao
extracts any cash limit from the transaction object (12) and dispenses gas until the limit is
reached, or until the Pump Control AO ordersastop (11). Once complete, the Gas Dispenser
Control Ao records the cost of gas purchased in the transaction object (12) and issues a stopped
event to the Pump Control Queue (13).

The Pump Control AO then completes the transaction. For a cash transaction, anew cash
value is computed for the customer’s cash card and the card is updated (14). For acredit
transaction, a credit transaction record is forwarded to the remote central facility viathe Transmit
Messages Queue (7). In either case, the customer’s card will finaly be g ected (14).

Now consider the flow of control activated by an emergency at the gas station. A timer event
(15) will activate the Detectors AO periodically so that the various smoke and heat detectors can
be polled. Should a pre-defined threshold be exceeded at any of the detectors, the Detectors AO
will generate athreshold exceeded event for the Gas Station Control Queue (16). The Gas
Station Control AO, once alerted to the emergency, will sound the gas station alarm and will
send an aarm message to the remote central facility viathe Transmit Messages Queue (17). The
Gas Station Control AO will also send a close command to each Pump Control Queue (18).
When the Pump Control AO receives a close command any transaction in progress will be
completed immediately and the pump will be closed.

The gas station can also be shutdown and restarted remotely from the central facility (23).
When asked to shutdown, a close command is issued to each Pump Control Queue and when
asked to restart an open command is issued to each Pump Control Queue (18). The gas station
can also be shutdown and restarted due to changes in the state of the communications link.
When the communications link state changes an interrupt isissued by the communications
hardware (21). The Communications Link AO will then start atimer. If thelink state doesn't
change for the duration of the time period (22), then the link state will be changed. If the link
goes down, then alink down event isissued to the Gas Station Control Queue; otherwise, alink
up event isissued to the Gas Station Control Queue (23). If the link goes up, then the Gas
Station Control AO issues an open command to each Pump Control Queue (18). If the link goes
down, then the Gas Station Control AO issues a close command to each Pump Control Queue
(18).

F-6

Timer Message Message

Event Received Sent
Interrup Interrupt
Smoke , _ .
Gas Station Transmit Outgoin
Sensor Control Messages 9 9
Data Queue Queue _MESS&QQS
=
GAS COMMUNICATIO
DETECTORS — STATION NS
LINK «—
CONTROL)
Heat Incoming
Sensor Messages
Data
Alarmv)
Commands Link
: —————————————————— Goht —— ~ ~ ~ T T/ T TTTTTTTT[TTTTT T T T T T TTTTTT State
| Queue Timer : Interrupt
: LED] Interrupt
| Commands LED :
: CONTROL '
I
I I
| card e | One Set Of
| Inserted Queue |« These Objects
: Inte PUMP _ | For Each
' card — CONTROL Transaction : Pump
: IData I CARD :
| READER Reader |
ICard CONTROL ['
eader Dispenser :
ICommands Gas Commands |
I Command |
: DISF?I?NSSER Meter :
| g Data |
| CONTROL [—* |
| Display |
I SWITCH Data I
: MONITORING |
I
I I
I I
I I
| Switch Switch !
| Activate Deactivated F-3 AGSM ACTIVE OBJECT ARCHITECTURE DIAGRAM :
| Interrupt Interrupt |

S 4

Timer
Event

15

Smoke
Sensor
Data

Control
Queue

15
DETECTORS /

Heat
Sensor
Data

T T T T T T T tght /T T T T T

Queue

LED
Commands

LED

18

Inserted
Inter

I

I

I

I

I

I

I

I

: Card
I

I

I

: Card
I

I

I

CONTROL
N 2
4

Pump
Control
Queue

Reader
Command

Gas Station

23

GAS
STATION

/

17

Message Message
Received Sent
Interrup Interrupt
Transmit Outgoing
Messages
Queue Messages

COMMUNICATION
S

CONTROL

Alarmv

Commands

PUMP
CONTROL

'Data ’ CARD
READER
Card CONTROL [
eader X
ICommands
|
|
|
|
|
|
I SWITCH
: MONITORING
|
|
|
I Switch Switch
| Activate Deactivated

| Interrupt 10

L —

Interrupt

11

Gas

Command /
| .

/

LINK +—
Incoming
Messages
21
22 Link
______________ T 1| State
Timer ' nterrupt
Interrupt |
|
|
|
|
|
: One Set Of
|«_1hese Objects
, : For Each
Transaction I Pump
|
|
|
12 |
Dispenser :
Commands [
|
DISF?I?NSSER o :
Data I
CONTROL [—* |
Display I
|
|
|
|
|
|
|

Data

F-4 ANNOTATED AGSM ACTIVE OBJECT ARCHITEC'IfURE DIAGRAM

AUTOMATED GAS STATION MANAGER

OMT/OODARTS

ACTIVE OBJECT

BEHAVIOR SPECIFICATIONS

F-6

Appendix F. OODARTS/OMT Design Active Object Behavior Specifications

CARD READER CONTROL ACTIVE OBJECT
BEHAVIOR SPECIFICATION

ACTIVE OBJECT: Card Reader Control
A) ACTIVE OBJECT INTERFACE:
AO INPUTS:

Events: 1) Card Inserted Interrupt (external event) - indicates customer inserted a
card.

M essages. 1) Reader Command (from Pump Control AQO, tightly-coupled, no reply) -
requests that the Card Reader perform some action.

parameters - command (0 = Eject, 1 = write), new_cash_value (included
only with write command).

Data 1) Card Data - ASCII data encoding identificaton number and either a cash value
(for a Cash Card) or and account number (for a Credit Card).

AO OUTPUTS:

M essages. 1) Card Event (to Pump Control Queue, loosely-coupled) - indicates
that a card was inserted.

parameters - action (0 = cash_card_inserted, 1 = credit_card_inserted),
Card (reference to Card Object)

2) Light Command (to Light Queue, loosely-coupled) - request that an LED be
lighted.

parameters - LED_number (O = Cash Vaue Used, 1=
Cannot_Process_Card)

Data 1) Card Reader Commands - include READ, WRITE, and EJECT.
2) Card Data - ASCII data encoding identificaton number and a new cash value.

OBJECT CLASSES REFERENCED:

CARD_READER - encapsulates card reader device operations.

F-7

Appendix F. OODARTS/OMT Design Active Object Behavior Specifications

CASH_CARD - encapsulates information from a Cash Card .

(created by Card Reader)
CREDIT_CARD - encapsulates information from a Corporate Credit Card
(created by Card Reader).
B) ACTIVE OBJECT STRUCTURE:
Criterion: Asynchronous Device I/0O Dependency and Functional Cohesion.

Objects: Card Reader
C) TIMING CHARACTERISTICS:

Activation: Asynchronousby a card inserted interrupt or by a message arriving from the
Pump Control AO or from a Transaction Object executing within the Pump
Control AO'sthread of control.

D) PRIORITY:
High - for interrupt handling, Medium for responding to messages.
E) ACTIVE OBJECT EVENT SEQUENCING:

Card_Reader: CARD_READER
Pump_Control:ACTIVE_OBJECT
Reader Command: M ESSAGE
Card_Inserted:AO_INTERRUPT

Create(pc: ACTIVE_OBJECT, pcg:ACTIVE_QUEUE, Iq:ACTIVE_QUEUE)
Card_Reader.Create(pcq, g, CR_REGISTER_BASE)
Card_Inserted.Create(Cl_INTERRUPT_VECTOR,wakeup)
Pump_Control := pc
Reader_ Command.Create(READER_COMMAND)

end Create

execute()
L oop
Await()
End L oop
end_execute

wakeup()
if (Card_Reader.read = FAL SE) then return
L oop

F-8

Appendix F. OODARTS/OMT Design Active Object Behavior Specifications

Wait for (Reader_Command) from Pump_Control
if (Reader_Command.command = Eject)
then Card Reader.Eject
return
elsif (Reader_Command.command = write)
then Card Reader.write(Reader_Command.new_cash value)
fi
End Loop
End wakeup

F) ERRORS DETECTED:

Ignores unrecognized commands.

F-9

Appendix F. OODARTS/OMT Design Active Object Behavior Specifications

COMMUNICATIONS LINK ACTIVE OBJECT
BEHAVIOR SPECIFICATION

ACTIVE OBJECT: Communications Link
A) ACTIVE OBJECT INTERFACE
AO INPUTS:

Events: 1) Link State Interrupt (external event) - indicates that the communications
hardware has detected a change in link state.

2) Message Received Interrupt (external event) - indicates that the
communications hardware has compl eted reception of an incoming

message.

3) Message Sent Interrupt (external event) - indicates that the communications
hardware has completed transmission of an outgoing message.

4) Time Out Interrupt (external event) - indicates expiration of atimer provided
by the communi cations hardware.

Messages: 1) Transmit Messages Queue

a) Alarm Message (from Gas Station Control AO, loosely-coupled) - requests
transmission of an Alarm Message to the Remote Central Facility.

parameters - remote_address, station_id

b) Authorization Request (from Pump Control AO, loosely-coupled) - requests
transmission of an Authorization Request Message to the Remote Central
Facility.
parameters - remote_address, station_id, pump_id, account_number

¢) Credit Transaction (from Pump Control AO, loosely-coupled) - requests
transmission of a Credit Transaction Message to the Remote Central

Facility.

parameters - remote_address, station_id, pump_id, account_number,
amount_purchased

F-10

Appendix F. OODARTS/OMT Design Active Object Behavior Specifications

d) Received (from self, loosely-coupled) - requests that an incoming message by
decoded.

parameters - none
Data: 1) Incoming Messages from the communications hardware.
AO OUTPUTS:

M essages. 1) RCF Event (to Gas Station Control Queue, loosely-coupled) - Remote Central
Facility requests the gas station to change its operating state.

parameters - rcf_event (0 = shutdown, 1 = restart)

2) Link Event (to Gas Station Control Queue, loosely-coupled) - indicates that the
communications link has changed state.

parameters - status (0 = link_down, 1 = link_up)

3) Credit Authorization Event (to Pump Control Queue, |oosely-coupled) -
informs the Pump about a customer’s credit status.

parameters - status (0 = not_okay, 1 = okay)
Data: 1) Outgoing Messages to the communications hardware.
OBJECT CLASSES REFERENCED:

LINK - encapsulates the Link STD and provides some operations for handling
messages.

B) ACTIVE STRUCTURE:
Criterion: Asynchronous Device I/0O Dependency and Control Dependency (Link object

encapsulates an STD in the analyze link operation), and Functional Cohesion
(Link object contains operations to support the communications processing).

Objects: Link
C) TIMING CHARACTERISTICS:

Activation: Asynchronous by a message arriving in the Transmit M essages Queue and by the
occurrence of various communications hardware interrupts.

D) PRIORITY:

F-11

Appendix F. OODARTS/OMT Design Active Object Behavior Specifications

High - for interrupt handling routines, Medium for processing the input queue.
E) ACTIVE OBJECT EVENT SEQUENCING

Link:LINK

Transmit_Messages Queue:ACTIVE_QUEUE

Link_State Interrupt: AO_INTERRUPT
RX_Interrupt: AO_INTERRUPT
TX Interrupt: AO_INTERRUPT
Time_Out_Interrupt: AO_INTERRUPT

Create(tmq:ACTIVE_QUEUE, gscq:ACTIVE_QUEUE, pcq:ARRAY[ACTIVE_QUEUE])
Link.Create(gscq, pcql, LINK_COMMAND_REGISTER)
Transmit_Messages Queue :=tmq
Link_State Interrupt.Create(LS INTERRUPT_VECTOR, Link_State)
RX_Interrupt.Create(RX_INTERRUPT_VECTOR, Message Rxed)
TX_Interrupt.Create(TX_INTERRUPT_VECTOR, Message Txed)
Time_Out_Interrupt.Create(TO_INTERRUPT_VECTOR, Time_Out)

end_Create

execute()
message:M ESSAGE
message.Create(SELECTOR)
L oop
Wait for message in Transmit_Messages Queue
Switch (message.type)
Case Alarm Message
Case Authorization Request
Case Credit Transaction
Link.add to tx_list(message)
Link.transmit_message
break
Case Received
Link.decode_message
break
End Switch
End L oop
end_execute
Link_State

F-12

Appendix F. OODARTS/OMT Design Active Object Behavior Specifications

event:LINK_EVENT

event :=input LINK_STATUS REGISTER
Link.analyze link(event)
End Link_State

Message Rxed
message:M ESSAGE
received: MESSAGE

message.Create(SELECTOR)
message ;= input RECEIVED_MESSAGE_POINTER
Link.add _to_rcv_list(message)
received.Create(RECEIVED)
send received to Transmit_Messages Queue

End Message Rxed

Message Txed
message: M ESSAGE

message := input SENT_MESSAGE_POINTER
fr ee(message)

Link.transmit_message
End_Message Txed

Time_Out

Link.analyze link(TIME_OUT)
End Time Out
F) ERRORS DETECTED:

Ignores unrecognized messages and events.

F-13

Appendix F. OODARTS/OMT Design Active Object Behavior Specifications

DETECTORS ACTIVE OBJECT
BEHAVIOR SPECIFICATION

ACTIVE OBJECT: Detectors
A) ACTIVE OBJECT INTERFACE:
AO INPUTS:
Events: 1) Timer (externa event) - stimulates the task to poll its various smoke
and hest detectors.
Data: 1) Smoke Sensor Data from the smoke detectors.
2) Heat Sensor Data from the heat detectors.
AO OUTPUTS:

Messages: 1) Emergency Event (to Gas Station Control Queue, loosely-coupled) - indicates
that the gas station is on fire.

parameters - none
OBJECT CLASSES REFERENCED:

DETECTOR - encapsul ates the Detector STD and provides some
operations for sending Emergency Events.

HEAT_DETECTOR - encapsulates raw sensor data from heat detectors.
SMOKE_DETECTOR - encapsulates raw sensor data from smoke detectors.

B) ACTIVE OBJECT STRUCTURE:

Criterion: Control Dependency (Detector object contains STD, encapuslated in the
Detector.monitor_sensor operation), Functional Cohesion (Detector object
provides operatons to process detector data), and Inheritance (Smoke Detector
and Heat_Detector objectsinherit DETECTOR object class).

Objects: Detector, Smoke Detector, Heat Detector

C) TIMING CHARACTERISTICS:

F-14

Appendix F. OODARTS/OMT Design Active Object Behavior Specifications

Activation: Periodic - activated by atimer, when AQO is enabled.

D) PRIORITY:
High - monitors safety conditions.
E) ACTIVE OBJECT EVENT SEQUENCING:

Detectors:L INKED_LIST of DETECTOR
NUMBER_OF DETECTORS:INTEGER isCONSTANT
sd:SMOKE_DETECTOR

hd:HEAT_DETECTOR

Gas_Station_Control:ACTIVE_OBJECT
Timer_Interrupt: AO_INTERRUPT

Create(gsc:ACTIVE_OBJECT, gscq: ACTIVE_QUEUE)
Register:HW_REGISTER

Gas_Station_Control := gsc

Register := DETECTOR_REGISTER_BASE

For NUMBER _OF DETECTORS
sd.Create(gscq, Register)
Detectors.add(sd)
Register.add(OFFSET)
hd.Create(gscq, Register)
Detectors.add(hs)
Register.add(OFFSET)

End For

Timer_Interrupt.Create(TIMER_INTERRUPT_VECTOR, Poll_Detectors)

end_Create

execute()
Poll: TIMER

Poll.Create
Poll.start(POLL_PERIOD)
L oop
Await()
End Loop
end _execute

Poll_Detectors
For Detectors.first until Detectors.last

F-15

Appendix F. OODARTS/OMT Design Active Object Behavior Specifications

Detectors.item.read
Detectors.item.process_change(Detectors.item.monitor_sensor)
Detectors.next
End For
End_Poll_Detectors

F) ERRORS DETECTED:

Ignores unrecognized commands.

F-16

Appendix F. OODARTS/OMT Design Active Object Behavior Specifications

GAS STATION CONTROL ACTIVE OBJECT
BEHAVIOR SPECIFICATION

ACTIVE OBJECT: Gas Station Control

A) ACTIVE OBJECT INTERFACE:

AO INPUTS:

Messages: 1) Gas Station Control Queue

a) RCF Event (from Communications Link AO, loosely-coupled) - indicates that
a command from the Remote Central Facility has arrived.

parameters - rcf_event (0 = shutdown, 1 = restart)
b) Link Event (from the Communications Link AO,
loosely-coupled) - indicates the communications link has changed
state
parameters - status (0 = link_down, 1 = link_up)

¢) Emergency Event (from Detectors AO, loosely-coupled) - indicates
that the gas station is on fire.

parameters - none
AO OUTPUTS:

M essages. 1) Gas Station Event (to Pump Control Queue, loosely-coupled) - requests
the pump to change its operating state.

parameters - command (0 = close, 1 = open)
2) Alarm Message (to Transmit Messages Queue, |oosely-coupled) -
informs the Remote Central Facility about an emergency at
the gas station.

parameters - remote address, station _id

Data: 1) Alarm Commands (ON or OFF) - turns the alarm on or off.

F-17

Appendix F. OODARTS/OMT Design Active Object Behavior Specifications

OBJECT CLASSES REFERENCED:

GAS STATION - encapsul ates the Gas Station STD and provides some
operations for sending messages to Active Objects.

ALARM - encapsulates operations to turn the alarm on and off.
B) ACTIVE OBJECT STRUCTURE:

Criterion: Control Dependency (Gas Station object contains STD,
encapuslated in the Gas Station.process_event operation, that sequences AO
operations.), Functional Cohesion (Gas Station object provides
operatons to support the STD), and Sequential Cohesion (the Alarm object is used
by the Gas Station STD to access alarm functions).

Objects: Gas_Station, Alarm

C) TIMING CHARACTERISTICS:

Activation: Asynchronous by a message arriving in the Gas Station Control Queue.
D) PRIORITY:

Medium - lower than the I/O tasks.

E) ACTIVE OBJECT EVENT SEQUENCING:
Gas_Station_Control_Queue:ACTIVE_QUEUE

Alarm:ALARM
Gas_Station:GAS _STATION
Gas_Station_Control_Queue:ACTIVE_QUEUE

Create(gscq: ACTIVE_QUEUE, pcgl:LINKED_LIST of ACTIVE_QUEUE,
tmo: ACTIVE_QUEUE, detectors ACTIVE_OBJECT,
rcf: ADDRESS, sta id:INTEGER)

Gas_Station_Control _Queue := gscq

Alarm.Create(ALARM_COMMAND_REGISTER)

Gas_Station.Create(rcf, sta_id, tmq, pcql, detectors, Alarm)
end_Create

execute()
event:GS_ EVENT
message: M ESSAGE

F-18

Appendix F. OODARTS/OMT Design Active Object Behavior Specifications

known: M ESSAGE

message.Create(SELECTOR)
L oop
Wait for message in Gas_Station_Control_Queue
Switch (message.type)
Case RCF Event
known.Create(RCF_EVENT, message)
if known.rcf_event = shutdown
then event.Create(SHUTDOWN)
elsif known.rcf_event = restart
then event .Create(RESTART)
fi
break
Case Link Event
known.Create(LINK_EVENT, message)
if known.status = link_down
then event.Create(LINK_DOWN)
elsif known.status = link_up
then event.Create(LINK_UP)
fi
break
Case Emergency Event
event.Create(THRESHOLD_EXCEEDED)
break
End Switch
Gas_Station.process_event(event)
End Loop
end _execute

F) ERRORS DETECTED:

Ignores Gas Station STD events that are not recognized.

F-19

Appendix F. OODARTS/OMT Design Active Object Behavior Specifications

GAS DISPENSER ACTIVE OBJECT
BEHAVIOR SPECIFICATION

ACTIVE OBJECT: Gas Dispenser Control
A) ACTIVE OBJECT INTERFACE:
AO INPUTS:

M essages. 1) Gas Command (from Pump Control AO, tightly-coupled, no reply) - requests
that the Gas Dispenser start or stop pumping gas.

parameters - command (0 = stop_dispensing, 1 = start_dispensing),
Transaction (reference to transaction object).

Data: 1) Meter Data - count of the amount of gas dispensed.
2) Transaction.limit - cash [imit on amount of gas to be dispensed
AO OUTPUTS:

M essages. 1) Stopped Event (to Pump Control Queue, |oosely-coupled) - indicates
that gasis no longer being dispensed.

Data 1) Dispenser Commands - turns dispenser ON and OFF.
2) Display Data - amount and cost of gas to be displayed for customer viewing.
3) Transaction.cost_of gas - records the cost of the customer’s purchase.
OBJECT CLASSES REFERENCED:
GAS DISPENSER - encapsul ates dispenser operations.
TRANSACTION - encapsul ates transaction data.
B) ACTIVE OBJECT STRUCTURE:
Criterion: Asynchronous Event Dependency (gas dispenser is activated and deactivated

by events from the Pump Control AO) and Functional Cohesion (the Gas
Dispenser Object encapsulates operations supporting gas dispenser functions).

F-20

Appendix F. OODARTS/OMT Design Active Object Behavior Specifications

Objects: Gas_Dispenser

C) TIMING CHARACTERISTICS:

Activation: Asynchronous by a message arriving from the Pump Control Task.
D) PRIORITY:

High - must monitor dispensing operation on a polling basis.

E) ACTIVE OBJECT EVENT SEQUENCING:

Gas Dispenser:GAS _DISPENSER
Pump_Control:ACTIVE_OBJECT
Dispenser_Command: M ESSAGE

Create(pc: ACTIVE_OBJECT, pcg: ACTIVE_QUEUE)
Pump_Control := pc
Gas_Dispenser.Create(pcg, DISPENSER_REGISTER_BLOCK)
Dispenser_Command.Create(DISPENSER_ COMMAND)
end_Create

execute()
Transaction: TRANSACTION

L oop
Wait for Dispenser_Command from Pump_Control
if Dispenser_Command.command not = start_dispensing
then continue
Transaction := Dispenser_Command. Transaction
Gas_Dispenser.clear_amount_dispensed
Gas_Dispenser.start_gas
L oop
Gas_Dispenser.update_amount_dispensed
Gas_Dispenser.update_display
if Gas_Dispenser.?limit_reached(Transaction)
then break
if Waiting Dispenser_Command from Pump_Control
then if Dispenser_Command.command = stop_dispensing

then break
End Loop
Gas_Dispenser.stop_gas(Transaction)
End Loop

end_execute

F-21

Appendix F. OODARTS/OMT Design Active Object Behavior Specifications

F) ERRORS DETECTED:

Ignores unrecognized commands.

F-22

Appendix F. OODARTS/OMT Design Active Object Behavior Specifications

LED CONTROL ACTIVE OBJECT
BEHAVIOR SPECIFICATION

ACTIVE OBJECT: LED CONTROL
A) ACTIVE OBJECT INTERFACE:
AO INPUTS:

Messages: 1) Light Command (from Pump Control and Card Reader Control AQOs,
loosely-coupled) - requests that an LED be lighted.

parameters - LED _number (0 = Cash Value Used, 1=
Cannot_Process_Card)

AOOUTPUTS:
Data: 1) LED Commands - turns LED ON and OFF.
OBJECT CLASSES REFERENCED:
NONE
B) ACTIVE OBJECT STRUCTURE:
Criterion: Resource Monitor Object.
Objects: LED
C) TIMING CHARACTERISTICS:
Activation: Asynchronousby a message arriving in the Light Queue.
D) PRIORITY:

Medium - controls two LEDs on a pump.

F-23

Appendix F. OODARTS/OMT Design Active Object Behavior Specifications

E) ACTIVE OBJECT EVENT SEQUENCING:

Light Queuet ACTIVE_QUEUE
Light Command:MESSAGE

Create(l: ACTIVE_QUEUE)

Light_Queue:=1q

Create.Light Command(LIGHT_COMMAND)
end_Create

execute()
L oop
Wait for Light Command in Light_Queue
if Light Command.LED_number = Cash_Value Used
then output ONtoLED 0O
delay 10 seconds
output OFFto LED_0O
elsif Light Command.LED_number = Cannot_Process_Card
then output ONtoLED 1
delay 10 seconds
output OFFto LED 1
fi
End L oop
end_execute

F) ERRORS DETECTED:

Ignores unrecognized LED numbers.

F-24

Appendix F. OODARTS/OMT Design Active Object Behavior Specifications

PUMP CONTROL ACTIVE OBJECT
BEHAVIOR SPECIFICATION

ACTIVE OBJECT: Pump Control

A) ACTIVE OBJECT INTERFACE:

AO INPUTS:

M essages:

Data:

1) Pump Control Queue

a) Switch Event (from Switch AO, loosely-coupled) - indicates that a
significant switch event has occurred

parameters - switch_event (0 = switch_off, 1 = switch_on)

b) Card Event (from Card Reader Control AO, loosely-coupled) - indicates
that a card was inserted.

parameters - action (0 = cash_card _inserted, 1 = credit_card_inserted),
Card (reference to Card Object)

¢) Gas Station Event (from Gas Station Control AO, loosely-coupled) - requests
that the Pump change its operating state.

parameters - command (O = close, 1 = open)

d) Authorization Event (from the Communications Link AO or from self,
loosely-coupled)

parameters - status (O = not_okay, 1 = okay)

€) Stopped Event (from Gas Dispenser AO, loosely-coupled) - indicates
that gasis no longer being dispensed.

parameters - none

1) Cash and Credit Card Information from the Card Object (which is created by
the Card Reader AO)

2) Transaction Information from the Transaction Object (which is created by
Pump Control AO)

F-25

Appendix F. OODARTS/OMT Design Active Object Behavior Specifications

ACTIVE OBJECT OUTPUTS:

M essages. 1) Reader Command (to Card Reader Control AO, tightly-coupled, no reply) -
reguests the Card Reader to execute a command.

parameters - command (O =Eject, 1 = write), new_cash_value (included
only with the write command)

2) Light Command (to Light Queue, loosely-coupled) -
requests LED Task light an LED.

parameters- LED_number (0 = Cash_value used, 1 =
Cannot_process_card)

3) Gas Command (to Gas Dispenser AO, tightly-coupled, no reply) - requests
that the Gas Dispenser start or stop pumping gas.

parameters - command (0 = stop_dispensing, 1 = start_dispensing),
Transaction (reference to transaction object).

4) Authorization Reguest (to the Transmit Messages Queue, loosely-coupled) -
requests that the Remote Central Facility check credit authorization
for a customer.

parameters - remote_address, station_id, pump_id, account_number

5) Credit Transaction (to the Transmit Messages Queue, |0osely-coupled) -

informs the Remote Central Facility about a completed credit

transaction.

parameters - remote_address, station_id, pump_id, account_number,
amount_purchased

Data 1) Transaction Object - created by this task.
OBJECT CLASSES REFERENCED:
PUMP - encapsul ates the Pump STD

CASH_CARD - encapsulates cash card information read by the Card Reader
AO.

CREDIT_CARD - encapsulates credit card information read by the Card Reader
AO.

F-26

Appendix F. OODARTS/OMT Design Active Object Behavior Specifications

TRANSACTION - encapsulates transaction information and is inherited by
CASH_TRANSACTION and CREDIT_TRANSACTION.
CASH_TRANSACTION - encapsulates transaction data about a cash
transaction.
CREDIT_TRANSACTION - encapsul ates transaction data about a credit
transaction.

B) ACTIVE OBJECT STRUCTURE:

Criterion: Control Dependency (Pump object contains STD, encapuslated in
the Pump.process_event operation, that sequences task operations.)

Objects: Pump

C) TIMING CHARACTERISTICS:

Activation: Asynchronous by a message arriving in the Pump Control Queue.
D) PRIORITY:

Medium - lower than the I/O tasks.

E) ACTIVE OBJECT EVENT SEQUENCING:

Station_id:INTEGER
Pump_id:INTEGER

Rcf: ADDRESS

Pump :PUMP
Pump_Control_Queue:ACTIVE_QUEUE
Light_Queue: ACTIVE_QUEUE
Card_Reader: ACTIVE_OBJECT
Link:ACTIVE_QUEUE

Create(pcg: ACTIVE_QUEUE, cr:ACTIVE_OBJECT, Iq:ACTIVE_QUEUE,
gd:ACTIVE_OBJECT, tmg:ACTIVE_QUEUE, rcf: ADDRESS
sta id:INTEGER, pump_id:INTEGER)

Rcf :=rcf

Pump_id := pump_id
Station_id :=sta id
Pump_Control_Queue := pcq
Light_Queue:=1q

Card _Reader :=cr

Link :=tmq

F-27

Appendix F. OODARTS/OMT Design Active Object Behavior Specifications

Pump.Create(gd, sta_id, pump_id)
end Create

execute()
event: PUMP_EVENT
card: CARD
message: M ESSAGE
known:MESSAGE
transaction: TRANSACTION
cash tran.CASH_TRANSACTION
credit_tran:CREDIT_TRANSACTION

message.Create(SELECTOR)
L oop
Wait for message in Pump_Control_Queue
Switch (message.type)
Case Switch Event
known.Create(SWITCH_EVENT, message)
if known.switch_event = switch_off
then event.Create(OFF)
elsif known.switch_event = switch_on
then eventCreate(ON)
fi
break
Case Card Event
known.Create(CARD_EVENT, message)
known.card := known.Card
if known.action = cash card inserted
then event.Create(CASH_CARD_INSERTED)
transaction :=
cash_tran.Create(Pump_Control_Queue,
Light_Queue, Card Reader)
elsif known.action = credit_card_inserted
then event.Create(CREDIT_CARD_INSERTED)
transaction :=
credit_tran.Create(Rcf, Station_id, Pump_id
Link, Light_Queue, Card_Reader)
fi
break
Case Gas Station Event
known.Create(GS_EVENT, messsage)
if known.command = close
then event.Create(CLOSE)
elsif known.command = open
then event.Create(OPEN)

F-28

Appendix F. OODARTS/OMT Design Active Object Behavior Specifications

fi
break
Case Credit Authorization Event
known.Create(AUTHORIZATION, message)
iIf known.status = not_okay
then event.Create(NOT_AUTHORIZED)
elsif known.status = okay
then event.Create(AUTHORIZED)
fi
break
Case Stopped Event
event.Create(STOPPED)
break
End Switch
Pump.process_event(event, card, transaction)
End Loop
end _execute

F) ERRORS DETECTED:

Ignores Pump STD events that are not recognized.

F-29

Appendix F. OODARTS/OMT Design Active Object Behavior Specifications

SWITCH MONITORING ACTIVE OBJECT
BEHAVIOR SPECIFICATION

ACTIVE OBJECT: Switch Monitoring

A) ACTIVE OBJECT INTERFACE:

AO INPUTS:
Events: 1) Switch Activated Interrupt (external event) - indicates pump switch was turned
2) Switch Deactivated Interrupt (external event) - indci)gétes pump switch was
turned off.
AOOUTPUTS:

M essages. 1) Switch Event (to Pump Control Queue, loosely-coupled) - indicates that a
switch event has occurred.

parameters - switch_event (0 = switch_off, 1 = switch_on)

OBJECT CLASSES REFERENCED:

SWITCH - encapsulates Switch STD and some supporting operations.
B) ACTIVE OBJECT STRUCTURE:
Criterion: Control Dependency (Switch STD encapsulated in

Switch.process_event operation) and Functional Cohesion (Switch object

provides some supporting operations).
Objects: Switch
C) TIMING CHARACTERISTICS:
Activation: Asynchronousby a Switch Interrupt.

D) PRIORITY:

High - captures and records hardware interrupts that would otherwise be lost.

F-30

Appendix F. OODARTS/OMT Design Active Object Behavior Specifications

E) ACTIVE OBJECT EVENT SEQUENCING:

Switch:SWITCH
Switch_Touch:AO_INTERRUPT

Create(pcg: ACTIVE_QUEUE)
Switch.Create(pcg, SWITCH_INPUT_REGISTER)
Switch_Touch.Create(SW_INTERRUPT_VECTOR, Switch.handle_switch_interrupt)
end_Create
execute()
L oop
Await()
End L oop
end_execute

F) ERRORS DETECTED:

None.

F-31

AUTOMATED GAS STATION MANAGER

OMT/OODARTS

OBJECT CLASS SPECIFICATIONS

F-32

Appendix F. OODARTS/OMT Design Object Class Specifications

Object Class Specifications
For

Automated Gas Station Manager (AGSM)

Object Class: ALARM

Encapsul ates: Specific method of accessing alarm hardware.
Object Structure: Device Interface Object

Assumptions: Sequential assess only.

Anticpated Changes: None
Attributes
Command_Register:HW_REGISTER

Operations

Create(cr:HW_REGISTER)
Command_Register := cr)

end Create
sound
output ON_COMMAND to Command_Register
end_sound
reset
output OFF_ COMMAND to Command_Register
end reset
Object Class: CARD
Encapsul ates: Card Identification Number and gives default operations for Account

Number and Cash Value stores.
Object Structure: Data Abstraction Object

Assumptions: Will beinherited by other objects.
F-33

Appendix F. OODARTS/OMT Design

Anticpated Changes. None
Attributes

identification_number: NUMERIC

Operations

set_id number(id:NUMERIC)
identification_number :=id
end set id number

get_id number:NUMERIC
return identification_number
end_get id_number

set_account_number(x:NUMERIC)
return
end_set_account_number

get_account_number:NUMERIC
return ZERO
end_get_account_number

set_cash value(X:INTEGER)
return
end set _cash value

get_cash value:INTEGER
return ZERO
end_get cash value

Object Class: CARD_READER

Object Class Specifications

Encapsulates: Specifics of interacting with Card Reader hardware.

Object Structure: Device Interface Object

Assumptions: Can serve asingle task and process one card at atime.

Anticpated Changes. None

Attributes

Appendix F. OODARTS/OMT Design Object Class Specifications

cc: CASH_CARD

ccc.CREDIT_CARD
Pump_Control_Queue: ACTIVE_QUEUE
Light_Queue: ACTIVE_QUEUE
CR_Base:HW_REGISTER

Operations

Create(pcq: ACTIVE_QUEUE, Ig: ACTIVE_QUEUE, cr_reg:HW_REGISTER)
Pump_Control_Queue := pcq
Light_Queue:=1q
CR _Base:=cr_reg

end Create

write(new_cash vaue INTEGER)
ASCIl_vaue: STRING

ASCII_value.convert_to(new_cash_value)
output cc.get_id, ASCIl_vaueto CR_Baset+tOUT
end_write

Eject
output EJECT_COMMAND to CR_Base+tCMD
end_gject

read: BOOLEAN
ASCII_ID :STRING
Card_Event: MESSAGE
Light_Command: M ESSAGE

input ASCII_ID from CR_Baset+IN
ASCII_ID.convert_from(identification_number)
if identification_number is for Cash Card
then cc.Create
cc.set_id(identification_number)
input ASCII_value from CR_Base+IN
ASCII_vaue.convert_from(cash_value)
cc.set_cash value(cash value)
Card_Event.Create(CARD_EVENT)
Card_Event.action.set(CASH_CARD_INSERTED)
Card_Event.Card.set(cc)
send Card_Event to Pump_Control_Queue
eisif identification_number isfor Corporate Credit Card
then ccc.Create,
ccc.set_id(identification_number)

F-35

Appendix F. OODARTS/OMT Design Object Class Specifications

input ASCII_value from CR_Base+IN
ASCII_vaue.convert_from(account_value)
ccc.set_account_number(account_number)
Card_Event.Create(CARD_EVENT)
Card_Event.action.set(CREDIT_CARD_INSERTED)
Card_Event.Card.set(ccc)
send Card_Event to Pump_Control_Queue

ese Light Command.Create(LIGHT_COMMAND)
Light Command.LED_number.set(CANNOT_PROCESS CARD)
send Light Command to Light_Queue
Eject
return FALSE

endif
return TRUE
end_read
Object Class: CASH_CARD
Encapsul ates: Information store on a Cash Card

Object Structure: Data Abstraction Object

Assumptions: Can be shared between tasks, multiple readers, one writer. Inherits
CARD.

Anticpated Changes. None
Attributes
cash_value: INTEGER

Operations

set_cash value(value INTEGER)
cash value :=value
end set _cash value

get_cash value INTEGER
return cash_value
end_get_cash value
Object Class: CASH_TRANSACTION

Encapsul ates: Information about atransaction in progress.

F-36

Appendix F. OODARTS/OMT Design Object Class Specifications

Object Structure: Data Abstraction Object.

Assumptions: Can be shared among tasks, multiple readers, multiple writers. Inherits
TRANSACTION.

Anticpated Changes: None.
Attributes

Pump_Control_Queue:ACTIVE_QUEUE
Light Queue:ACTIVE_QUEUE
Card_Reader:ACTIVE_OBJECT

Operations

Create(pcq: ACTIVE_QUEUE, Iq:ACTIVE_QUEUE, cr:ACTIVE_OBJECT)
Pump_Control_Queue := pcq
Light_Queue:=1q
Card_Reader :=cr

end_Create

authorize(cc:CARD)
Auth_Event :MESSAGE

Auth_Event.Create(AUTHORIZATION)
if cc.get_cash value>0
then limit :=cc.get_cash value
Auth_Event.status.set(OKAY)
send Auth_Event to Pump_Control_Queue
else Auth_Event.status.set(NOT_OKAY)
send Auth_Event to Pump_Control_Queue
end_authorize

reject
Light_Command:M ESSAGE
Reader Command: M ESSAGE

Light_Command.Create(LIGHT_COMMAND)
Light Command.LED_number.set(CASH_VALUE_USED)
send Light Command to Light Queue
Reader Command.Create(READER_COMMAND)
Reader_Command.command.set(EJECT)
send Reader Command to Card Reader

end_reject

F-37

Appendix F. OODARTS/OMT Design Object Class Specifications

complete(cc: CARD)
Reader Command: M ESSAGE

new_cash value := cc.get_cash value- cost_of gas
Reader_Command.Create(READER_COMMAND)
Reader_Command.command.set(WRITE)

Reader Command.data.set(new_cash value)

send Reader_ Command to Card Reader

Reader Command.Create(READER_COMMAND)
Reader _Command.command.set(EJECT)

send Reader Command to Card _Reader

end_complete

Object Class: CREDIT_CARD

Encapsul ates: Data read from customer’s corporate credit card

Object Structure: Data Abstraction Object

Assumptions: Can be shared between tasks, one writer, multiple readers. Inherits
CARD.

Anticpated Changes: None

Attributes

account_number: NUMERIC

Operations
set_account_number(account:NUM ERIC)
account_number := account

end_set_account_number
get_account_number:NUMERIC

return account_number
end_get_account_number

Object Class: CREDIT_TRANSACTION

Encapsul ates: Data associated with a credit transaction that is in progress.

F-38

Appendix F. OODARTS/OMT Design Object Class Specifications

Object Structure: Data Abstraction Object

Assumptions: Can be accessed by multiple reader and multiple writer tasks.
Inherits TRANSACTION.

Anticpated Changes: None

Attributes

Remote_Central_Facility: ADDRESS
Station ID : INTEGER

Pump_ID : INTEGER

Link: ACTIVE_QUEUE

Light: ACTIVE_QUEUE
Card_Reader:ACTIVE_OBJECT

Operations

Create(rcf: ADDRESS, sid:INTEGER, pid:INTEGER, comm:ACTIVE_QUEUE,
lg: ACTIVE_QUEUE, cr:ACTIVE_OBJECT)
Remote_Central_Facility := rcf
Station_ID :=sid
Pump_ID :=pid
Link := comm
Light :=1q
Card_Reader :=cr
end create

authorize(ccc: CARD)
Auth_Request:M ESSAGE

limit: =0
Auth_Request.Create(AUTHORIZATION_REQUEST)
Auth_Request.destination.set(Remote_Central _Facility)
Auth_Request.station.set(Station_|ID)
Auth_Rgeuest.pump.set(Pump_ID)
Auth_Request.account.set(ccc.get_account_number)
send Auth_Request to Link

end_authorize

reject
Light_Command:M ESSAGE
Reader Command: M ESSAGE

Light_Command.Create(LIGHT_COMMAND)
F-39

Appendix F. OODARTS/OMT Design Object Class Specifications

Light_Command.LED_number.set(CANNOT_PROCESS _CARD)
send Light_Command to Light
Reader Command.Create(READER_COMMAND)
Reader Command.command.set(EJECT)
send Reader_ Command to Card _Reader
end_reject

complete(ccc: CARD)
Credit_ Tran-MESSAGE
Reader Command: M ESSAGE

Credit_Tran.Create(CREDIT_TRANSACTION)

Credit_Tran.destination.set(Remote_Central_Facility)

Credit_Tran.station.set(Station_ID)

Credit_Tran.pump.set(Pump_ID)

Credit_Tran.account.set(ccc.get_account_number)

Credit_Tran.amount.set(cost_of _gas)

send Credit_Tranto Link

Reader_ Command.Create(READER_COMMAND)

Reader Command.command.set(EJECT)

send Reader_ Command to Card_Reader
end_complete

Object Class: DETECTOR

Encapsulates: The abstract logic of a detector device.

Object Structure: Algorithm Abstraction Object

Assumptions: Will beinherited by specific types of detector objects.
Anticpated Changes: None

Attributes

threshold: REAL isCONSTANT

status. INTEGER
processed_sensor_data: REAL
Gas_Station_Control:ACTIVE_QUEUE

Operations

monitor_sensor:REAL
delta REAL

F-40

Appendix F. OODARTS/OMT Design Object Class Specifications

delta := processed_sensor_data - threshold
delta.absolute value
return delta

end_monitor_sensor

process _change(deltas REAL)
Encapsulates DETECTOR STD
end_process_change

send_threshold exceeded
Emergency_Event:M ESSAGE

Emergency_Event.Create(EMERGENCY)
send Emergency Event to Gas_Station_Control
end_send_threshold exceeded

read {abstract}
Must be provided for each type of detector that inherits detector.
end_read
Object Class: GAS _DISPENSER
Encapsul ates: Gas dispenser hardware.
Object Structure: Device Inteface Object
Assumptions: Executes under control of a sequential task.
Anticpated Changes: None
Attributes

amount_dispensed: REAL

price_per_galon: INTEGER isCONSTANT
Pump_Control :ACTIVE_OBJECT
Pump_Control_Queue :ACTIVE_QUEUE

Operations

Create(pc: ACTIVE_OBJECT, pcq:ACTIVE_QUEUE)
Pump_Control := pc
Pump_Control_Queue := pcq

end Create

F-41

Appendix F. OODARTS/OMT Design Object Class Specifications

clear_amount_dispensed
output BLANK_COMMAND to GALLONS DISPLAY_ REG
output BLANK_COMMAND to COST_DISPLAY_REG
amount_dispensed := zero

end_clear_amount_dispensed

update_amount_dispensed
Meter_Data:INTEGER

input Meter Datafrom METER_INPUT_REG
amount_dispensed := Meter_Data
end_update_amount_dispensed

update_display
display gallonsINTEGER
display_cost:INTEGER

display_gallons := amount_dispensed/100

display_cost := display_gallons* price_per_galon

output display_gallonsto GALLONS DISPLAY_ REG

output display costto COST_DISPLAY_REG
end_update_display

get_amount_dispensed:REAL
return amount_dispensed
end_get amount_dispensed

get_price INTEGER
return price_per_gallon
end_get price

2imit_reached(t: TRANSACTION)
if t.get_limit=0then return FALSE
if amount_dispensed/100 * price_per_galon >=t.get_limit
then return TRUE
elsereturn FALSE
end_?limit_reached

send_stopped
Stopped_Event:M ESSAGE

Stopped_Event.Create(STOPPED)

send Stopped_Event to Pump_Control_Queue
end_send_stopped

F-42

Appendix F. OODARTS/OMT Design Object Class Specifications

start_gas
output START_COMMAND to DISPENSER_CNTL_REG
end_start_gas

stop_gas(t: TRANSACTION)

output STOP_COMMAND to DISPENSER_CNTL_REG
update_amount_dispensed

update_display
t.set_cost_of gas(amount_dispensed * 100/ price_per_gallon)
send_stopped
end_stop _gas
Object Class: GAS STATION
Encapsulates: Gas Station State Transition Diagram
Object Structure: State Transition Object
Assumptions: Will execute under control of asingle, sequential task.
Anticpated Changes: None
Attributes

status: INTEGER

Pump_lds: LINKED_LIST of ACTIVE_QUEUE
Station Id: INTEGER

Remote_Central_Facility : ADDRESS
Alarm:ALARM

Link:ACTIVE_QUEUE

Operations

create(rcf: ADDRESS, sid:INTEGER, comm: ACTIVE_QUEUE, pid_list:LINK_LIST of
ACTIVE_QUEUE, Whistlee ALARM)

Link := comm
Remote_Central_Facility := rcf
Station Id :=sid
Pump_lds:= pid_list
status := OPERATING
Alarm := Whistle

end create

F-43

Appendix F. OODARTS/OMT Design Object Class Specifications

process_event(event:GS EVENT)
ENCAPSULATES the Gas Station STATE TRANSITION DIAGRAM
end_process_event

send_alarm_message
Help:MESSAGE

Help.Create(ALARM)
Help.destination.set(Remote _Central_Facility)
Help.station.set(Station_id)
send Help to Link

end_send alarm_message

send _close
Close MESSAGE

for Pump_lds.first until Pump_lds.last
Close.Create(GAS _STATION_EVENT)
Close.command.set(CLOSE)
send Close to Pump_lds.current.item
end for
end send close

send_open
Open:MESSAGE

for Pump_lds.first until Pump_lds.last
Open.Create(GAS_STATION_EVENT)
Open.command.set(OPEN)
send Open to Pump_lds.current.item
end for
end_send_open

Object Class: HEAT _DETECTOR

Encapsulates: Details of specific heat detector hardware.

Object Structure: Device Interface Module

Assumptions: Accessed by asingle sequential task. InheritsDETECTOR.
Anticpated Changes: None

F-44

Appendix F. OODARTS/OMT Design Object Class Specifications

Attributes
Input_Register:HW_REGISTER

Operations

Create(gscq:ACTIVE_QUEUE, In_Regsiter:HW_REGISTER)
Gas_Station_Control := gscq
status := BELOW_THRESHOLD
Input_Register := In_Register

end Create

read
Sensor_Data: INTEGER

input Sensor_Data from Input_Register
processed_sensor_data := Sensor_Data

end_read

Object Class: LINK

Encapsulates: Details associated with communications link hardware.
Object Structure: Device Interface Object

Assumptions: Accessible by a sequential task.

Anticpated Changes. None
Attributes

status: INTEGER

RCV_LIST: LINKED_LIST of MESSAGE

TX_LIST: LINKED_LIST of MESSAGE
CREDIT_TRANSACTION_LIST: FILE of MESSAGE
Gas _Station _Control_Queue ACTIVE_QUEUE
Pumps:ARRAY[ACTIVE_QUEUE]
Command_Register:HW_REGISTER

F-45

Appendix F. OODARTS/OMT Design Object Class Specifications

Operations

Create(gscq: ACTIVE_QUEUE, pcql:ARRAY[ACTIVE_QUEUE],
Cmd_Register:HW_REGISTER)
status:= LINK_UP
Gas_Station_Control _Queue := gscq
Pumps := pcd
Command_Register := Cmd_Register
end_Create

add_to_rcv_list(msg:M ESSAGE)
insert msg at tail of RCV_LIST
end add to rev_list

decode_message
msg: MESSAGE
RCF_Event:M ESSAGE
Auth_Event: MESSAGE
Auth_Reply:MESSAGE

get msg from head of RCV_LIST
Switch(msg.type)

Case RESTART COMMAND
RCF_Event.Create(RCF_EVENT)
RCF_Event.rcf_event.set(RESTART)
send RCF_Event to Gas_Station_Control_Queue
break

Case SHUTDOWN COMMAND
RCF_Event.Create(RCF_EVENT)
RCF_Event.rcf_event.set(SHUTDOWN)
send RCF_Event to Gas_Station_Control_Queue
break

Case AUTHORIZATION REPLY
Auth_Reply.Create(AUTHORIZATION_REPLY ,msg)
if Auth_Reply.status = OKAY

then Auth_Event.Create(AUTHORIZATION)
Auth_Event.status.set(OKAY)
send Auth_Event to Pumps[Auth_Reply.Pump_id]
else Auth Event.Create(AUTHORIZATION)
Auth_Event.status.set(NOT_OKAY)
send Auth_Event to Pumps[Auth_Reply.Pump_id]
endif
break
End Switch
remove msg from the RCV LIST

F-46

Appendix F. OODARTS/OMT Design Object Class Specifications

free msg for use as a new receive buffer
end_decode_message

analyze link_state(event:LINK_EVENT)
ENCAPSULATESLink STATE TRANSITION DIAGRAM
end_anayze link_state

add_to_tx_list(msg:M ESSAGE)
insert msg at tail of TX_LIST
transmit_message

end_add to tx_list

transmit_message
If TX_LIST isempty then return
if statusis UP and no message is being transmitted
then output TX_CMD, next message from TX_LIST B Command_Register
elsif statusis DOWN
then save credit_transactions
endif
return
end_transmit_message

save credit_transactions
for each messageon TX_LIST
If messageis a Credit Transaction
then write message to CREDIT_TRANSACTION_LIST
endif
remove message from TX_LIST
end for each message on TX_LIST
end save credit_transactions

restore_credit_transactions
for each message on CREDIT_TRANSACTION_LIST
add message to head of TX_LIST
remove message from CREDIT_TRANSACTION_LIST
end for each message on CREDIT_TRANSACTION_LIST
end restore credit_transaction

Object Class: PUMP
Encapsulates: Pump State Transition Diagram
Object Structure: State Transition Object

F-47

Appendix F. OODARTS/OMT Design Object Class Specifications

Assumptions: Executed under control of a sequential task
Anticpated Changes: None
Attributes

status. INTEGER

ID: INTEGER -- identity of the Pump

Station: INTEGER -- identity of the station where the pump islocated
Dispenser:ACTIVE_OBJECT

Operations

Create(gd:ACTIVE_OBJECT, staINTEGER, pid:INTEGER)
Dispenser :=gd
Station := sta
ID :=pid
status := OPEN
end_create

process_event(event:PUMP_EVENT, card: CARD, t: TRANSACTION)
ENCAPSULATES THE PUMP STATE TRANSITION DIAGRAM
end_process_event

Object Class: SMOKE_DETECTOR

Encapsul ates: Details of specific smoke detector hardware.

Object Structure: Device Interface Module

Assumptions: Accessed by asingle sequential task. InheritsDETECTOR.
Anticpated Changes: None

Attributes

Input_Register:HW_REGISTER

Operations

Create(gscq: ACTIVE_QUEUE, In_Regsiter:HW_REGISTER)
Gas_Station_Control := gscq

F-48

Appendix F. OODARTS/OMT Design Object Class Specifications

status := BELOW_THRESHOLD
Input_Register := In_Register
end_Create

read
Sensor_Data: INTEGER

input Sensor_Data from Input_Register
processed _sensor_data := Sensor_Data

end_read

Object Class: SWITCH

Encapsul ates: Switch hardware and state transition diagram.
Object Structure: State Transition Object

Assumptions: Executed by a sequential task

Anticpated Changes: None

Attributes

status. INTEGER
Pump_Control_Queue:ACTIVE_QUEUE
Switch_Register:HW_REGISTER

Operations

Create(pcq: ACTIVE_QUEUE, sw_reg:HW_REGISTER)
Pump_Control_Queue := pcq
Switch_Register := sw_reg
status := SWITCH_OFF

end Create

handle_switch_interrupt
event:SWITCH_EVENT

input event from Switch_Register
process_event(event)
end_handle_switch_interrupt

process_event(event:SWITCH_EVENT)
ENCAPSULATES SWITCH STATE TRANSITION DIAGRAM

F-49

Appendix F. OODARTS/OMT Design Object Class Specifications

end_process_event

send_switch_on
Switch Event:MESSAGE

Switch_Event.Create(SWITCH_EVENT)

Switch_Event.switch_event.set(SWITCH_ON)

send Switch_Event to Pump_Control_Queue
end_send switch _on

send_switch_off
Switch_Event:MESSAGE

Switch_Event.Create(SWITCH_EVENT)

Switch_Event.switch_event.set(SWITCH_OFF)

send Switch Event to Pump_Control_Queue
end_send switch_off

Object Class: TRANSACTION
Encapsul ates: Astract concept of atransaction in progress.

Object Structure: Data Abstraction Object

Assumptions: To be inherited by other objects. Can be shared among tasks with
multiple readers, multiple writers.

Anticipated Changes. None
Attributes

cost_of gas: INTEGER
limit: INTEGER

Operations

get limt:INTEGER
return limit
end_get limt

set_cost_of gas(amount:.INTEGER)
if amount <0
then cost_of gas:=0
else

F-50

Appendix F. OODARTS/OMT Design

cost_of gas := amount
endif
end_set cost of gas

complete {abstract}
Must be provided by an inheriting object
end_complete

authorize {abstract}
Must be provided by an inheriting object
end_authorize

reject {abstract}
Must be provided by an inheriting object
end_reject

F-51

Object Class Specifications

AUTOMATED GAS STATION MANAGER

OMT/OODARTS

SYSTEM ARCHITECTURE

F-52

Appendix F. OODARTS/OMT Design System Architecture Overview

Overview Of AGMS System Architecture

The AGMS system architecture, illustrated in Figure F-54, augments the active object (AO)
architecture, shown previously in Figure F-3, by identifying the passive objects within the system
and by showing the allocation of those objects among the active objects. A Gas Station object
and an Alarm object are included within the Gas Station Control AO. Within the Detectors AO,
aHeat Detector object isincluded for each heat detector in the gas station and a Smoke Detector
object isincluded for each smoke detector. The Communications Link AO includesaLink
object.

Turning to the active objects associated with each pump, the Pump Control AO includes a
Pump object, the Card Reader Control AO includes a Card Reader object, the Switch Monitoring
AOQ includes a Switch object, and the Gas Dispenser Control AO includes a Gas Dispenser
object. (The LED Control AO contains and uses no passive objects.) Within each set of pump
AQs, the Cash Card, Credit Card, Cash Transaction, and Credit Transaction passive objects play
akeyrole.

The Cash Card and Credit Card objects are used by the Card Reader Control AO to store the
information read from a customer’s cash card and credit card, respectively. Thisinformationis
them accessible to the Cash Transaction or Credit Transaction object, when executing under the
thread of control provided by the Pump Control AO. The Cash Transaction object uses the
information maintained by the Cash Card object to authorize a transaction and to compute a new
cash value. The Credit Transaction object uses the information maintained by the Credit Card
object to request, from the remote central facility, authorization of atransaction and to report the
completion of atransaction to the remote central facility. The Gas Dispenser Control AO uses
the Transaction object (of either type, cash or credit) to determineif alimit is set on the cost of
gas to be dispensed and to store the cost of any gas that is dispensed from the gas dispenser. The
Pump Control AO uses the Transaction object (of either type) to request that a transaction be
authorized, rejected, or completed. These passive objects (Cards and Transaction), shared
between active objects, embody the polymorphism described in the OMT specification.

A Cash Transaction object is capable of issuing write and g ect commands to the Card Reader
Control AO and of issuing light commands to the Light Queue. A Credit Transaction object is
capable of issuing gect commands to the Card Reader Control AO, of sending light commands
to the Light Queue, and of requesting credit authorization and reporting completed credit
transactions viathe Transmit M essages Queue.

F-53

Timer

Event
Smoke i . . L .
S Detectors Gas Station Gas Station Control Transmit Communications Link
ensor Control Messages
Data Smoke Queue Queue
> Detecto >
Heat Gas Station Outgoing
Detector = —/ [Alarm
Messages
1 %
gss;or Incoming
Data \Messages
Alarmy Message Message
— Commands Received Sent
ight i i
LED Control Queue Interrupt 1imer LinK Interrupt
Interrupt State
LED —] < Interrupt
Commands
redit
Card Elcj)rr?t?ol ransaction One Set Of
Inserted Queue These Objects
Inter Card Reader Control | For Each
Pump
Card
Data |
Card Reader | Cash _
Reader Command Transaction
Card
eader
Commandg Credit Card
Switch Monitoring .)
et_acco um_number | g > Dlspenser
Gas Commands
Comman Meter
Switch — —> Data
= seL s romve [g niogg l Depiay
] <—’/l Data
set|_cash_valug¢ value:
Switch Switch Cash Card
Activate Deactivated F-54 AGSM SYSTEM ARCHITECTURE DIAGRAM CREATED FROM OMT
Interrupt Interrupt SPECIFICATION

